Effect of Rolling Deformation on Corrosion Behaviour of AISI 304L in 3% NaCl Solution

Article Preview

Abstract:

It is well known that the mechanical resistance of austenitic stainless steels can be increased considerably by cold rolling process.¶ The cold rolling effect on corrosion resistance of AISI 304L stainless steel in 3% Sodium Chloride solution was investigated by potentiodynamic polarisation and by Scanning Electronic Microscopy (SEM). The pitting corrosion in this environment is related to the rate of cold deformation. The cold rolling induces important changes in the microstructure and involves phase transformation (γ→a'). The AISI 304L developes martensitic structure after 16% cold working. The potentiodynamic results show a moderate variation of the passivity zone, a remarkable decrease in the pitting potential and a free potential. The results also show an increase in the current density. However, it seems that the critical deformation rate appears to start at approximately 50% of the rolling deformation where the passivation current is minimal. After the polarisation tests, metastable pits are observed using SEM and the most probable initiation causes are discussed

You might also be interested in these eBooks

Info:

Periodical:

Pages:

375-384

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Hussain, A. Husain, Desalination 183 (2005) 227–234.

Google Scholar

[2] K. Konefal, M. Korzynski, Z. Byczkowska, K.Korzynska, Improved corrosion resistance of stainless steel X6CrNiMoTi17-12-2 by slide diamond burnishing, Journal of Material Processing Technology, Vol.213, issue11, (2013).

DOI: 10.1016/j.jmatprotec.2013.05.021

Google Scholar

[3] Z.H. Jin, H.H.Ge, Y.W. Zong, Z.H. Jin, W.W. Lin, , S.J. Liu, J.M. Shi, Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution,Vol.322, pp.47-56, (2014).

DOI: 10.1016/j.apsusc.2014.09.205

Google Scholar

[4] L. Smith, Duplex America 2000 Conference, Stainless Steel World-KCL Publishing, BV, 2000. DA2_102.

Google Scholar

[5] O. Sanni, A. P. I. Popoola, O. S. I. Fayomi, A Comparative study of inhibitive effect of waste product on stainless steel corrosin in sodium chloride/sulfuric acid environments, Metallography, Microstructure, and Analysis (2019).

DOI: 10.1007/s13632-018-0495-5

Google Scholar

[6] S. Girija, U. Kamachi Mudali, V.R. Raju, R.K. Dayal, H.S. Khatak, Baldev Raj, Materials Science and Engineering A 407 (2005) 188–195.

DOI: 10.1016/j.msea.2005.07.022

Google Scholar

[7] S. Pal, S. S. Bhadauria, P. Kumar , Pitting, S. Pal, Corrosin Behavior of F304 Stainless Steel Under the Exposure of Ferric Chloride Solution, Journal Journal of Bio- and Tribo-Corrosion, Vol.5, (2019).

DOI: 10.1007/s40735-019-0283-z

Google Scholar

[8] D. C. Cook, Study of the surface structure of tempered carbon steel, Hyperfine Interactions 41 (1988) 625-628.

DOI: 10.1007/bf02400468

Google Scholar

[9] K. M.A. Kuznetsov, E.A. Zernin, V.I. Danilov, Procedia Enginneering, volume 206, (2017) pp.1264-1271.

Google Scholar

[10] R.K. Dayal, N. Parvathavarthini, J.B. Gnanamoorthy, in: Proceedings of the Ninth International Congress on Metallic Corrosion, vol. 3, National Research Council, Canada, Toronto, 1984, p.141.

Google Scholar

[11] B. Mazza, P. Pedeferri, D. Sinigaglia, A. Cigada, A. Fumagalli, G. Re, Corrosion Science 19 (1979) 907.

DOI: 10.1016/s0010-938x(79)80112-2

Google Scholar

[12] U. Kamachi Mudali, N. Parvathavarthini, R.K. Dayal, J.B. Gnanamoorthy, Trans. Ind. Inst. Met. 41 (1988) 35.

Google Scholar

[13] A. Barbucci, M. Delucchi, M. Panizza, M. Sacco, G. Cerisola, Journal of Alloys and Compounds 317–318 (2001) 607–611.

DOI: 10.1016/s0925-8388(00)01396-7

Google Scholar

[14] L. Peguet, B. Malki, B. Baroux, Corrosion Science 49 (2007), 1933–(1948).

Google Scholar

[15] S.V. Phadnis, A.K. Satpati, K.P. Muthe, J.C. Vyas, R.I. Sudaresan, Corrosion Science 45 (2003) 2467.

Google Scholar

[16] F. Navaï, O. Debbouz, Journal of Materials Science 34 (1999) 1073.

Google Scholar

[17] F. Navaï, Journal of Materials Science 30 (1995) 1166.

Google Scholar

[18] G. Salvage, G. Fumagalli, D. Sinigaglia, Corrosion Science 23 (1983) 515.

Google Scholar

[19] V. Vignal, N. Mary, C. Valot, R. Oltra, L. Coudreuse, Electrochemical and Solid-State Letters 7 (2004) C39.

DOI: 10.1149/1.1647995

Google Scholar

[20] U. Kamachi Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, Baldev Raj, Corrosion Science 44 (2002) 2183.

DOI: 10.1016/s0010-938x(02)00035-5

Google Scholar

[21] A. Barbucci, G. Cerisola, P.L. Cabot, Journal of the Electrochemical Society 149 (2002) B534.

Google Scholar

[22] V.A.C. Haanappel, M.F. Stroosnijder, Corrosion 57 (6) NACE International pp.557-565 (2001).

Google Scholar

[23] B. Ravi Kumar, Raghuvir Singh, Bhupeshwar Mahato, P.K. De, N.R. Bandyopadhyay, D.K. Bhattacharya, Materials Characterization 54 (2005) 141.

Google Scholar

[24] R. Stefec, F. Franz, Corrosion Science 18 (1978) 161.

Google Scholar

[25] B.C. Syrett, S.S. Wing, Corrosion 34 (1978) 138.

Google Scholar

[26] B. Mazza, P. Pedeferri, D. Sinigaglia, A. Cigada, G.A. Mondora, G. Re, G. Taccani, D. Wenger, Journal of the Electrochemical Society 126 (1979) (2075).

DOI: 10.1149/1.2128863

Google Scholar

[27] U. Kamachi Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, Baldev Raj, Corrosion Science 44 (2002) 2183–2198.

DOI: 10.1016/s0010-938x(02)00035-5

Google Scholar

[28] B. Ravi Kumar, B. Mahato and R. Singh, Metallurgical and Materials Transactions A, Springer Boston, Volume 38, 2007, 2085-2094.

Google Scholar

[29] A. Bose, P.K. De, Corrosion 43 (1987) 824.

Google Scholar

[30] T.A. Mozhi, M.C. Juhas, B.E. Wilde, Scri. Met. 21 (1987) 1547.

Google Scholar

[31] V. Kain, K. Chandra, K.N. Adhe, P.K. De, Journal of Nuclear Materials 334 (2004) 115–132.

Google Scholar

[32] Daisuke Shintani, Toshio Ishida, Hirokazu Izumi, Tomokazu Fukutsuka, Yoshiaki Matsuo, Yosohiro Sugie, Corrosion Science 50 (2008) 2840–2845.

DOI: 10.1016/j.corsci.2008.07.006

Google Scholar

[33] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Corrosion Science 50 (2008) 1796-1806.

DOI: 10.1016/j.corsci.2008.04.005

Google Scholar

[34] C.Barile, C.Casavola, C.Pappalettere, Corrosion effects on mechanical properties of sintered stainless steels, 2nd International Conference on Structural Integrity, ICSI (2017), 4-7 September 2017, Funchal, Madeira, Portugal.

DOI: 10.1016/j.prostr.2017.07.101

Google Scholar

[35] J.M. Bastidas, C.L. Torres, E. Cano, J.L. Polo, Corrosion Science 44 (2002) 625–633.

Google Scholar