[1]
Angirasa D. (2000). Mixed convection in a vented enclosure with an isothermal vertical surface. Fluid Dynamics Research, 26 (4) 219.
DOI: 10.1016/s0169-5983(99)00024-6
Google Scholar
[2]
Orfi, J., & Galanis, N. (2002). Developing laminar mixed convection with heat and mass transfer in horizontal and vertical tubes. International journal of thermal sciences, 41 (4), 319-331.
DOI: 10.1016/s1290-0729(02)01322-4
Google Scholar
[3]
Rahman, M., Alim, M. A., Saha, S., & Chowdhury, M. K. (2008). Mixed convection in a vented square cavity with a heat conducting horizontal solid circular cylinder. Journal of naval architecture and marine engineering, 5(2), 37-46.
DOI: 10.3329/jname.v5i2.2504
Google Scholar
[4]
Khanafer, K., Al-Azmi, B., Al-Shammari, A., & Pop, I. (2008). Mixed convection analysis of laminar pulsating flow and heat transfer over a backward-facing step. International journal of heat and mass transfer, 51(25-26), 5785-5793.
DOI: 10.1016/j.ijheatmasstransfer.2008.04.060
Google Scholar
[5]
Kuznetsov, G. V., & Sheremet, M. A. (2008). Mathematical simulation of conjugate mixed convection in a rectangular region with a heat source. Journal of Applied Mechanics and Technical Physics, 49(6), 946–956.
DOI: 10.1007/s10808-008-0117-0
Google Scholar
[6]
Madadi, R. R., & Balaji, C. (2008). Optimization of the location of multiple discrete heat sources in a ventilated cavity using artificial neural networks and micro genetic algorithm. International Journal of Heat and Mass Transfer, 51(9-10), 2299–2312.
DOI: 10.1016/j.ijheatmasstransfer.2007.08.033
Google Scholar
[7]
Jung, J., Lorente, S., Anderson, R., & Bejan, A. (2011). Configuration of heat sources or sinks in a finite volume. Journal of Applied Physics, 110(2), 023502.
DOI: 10.1063/1.3610387
Google Scholar
[8]
Sheremet, M. A., & Shishkin, N. I. (2012). Mathematical simulation of convective-radiative heat transfer in a ventilated rectangular cavity with consideration of internal mass transfer. Journal of Engineering Physics and Thermophysics, 85(4), 828–835.
DOI: 10.1007/s10891-012-0720-z
Google Scholar
[9]
Khanafer, K., & Aithal, S. M. (2013). Laminar mixed convection flow and heat transfer characteristics in a lid driven cavity with a circular cylinder. International Journal of Heat and Mass Transfer, 66, 200-209. doi : 10.1016/j.ijheatmasstransfer.2013.07.023.
DOI: 10.1016/j.ijheatmasstransfer.2013.07.023
Google Scholar
[10]
Ajmera, S. K., & Mathur, A. N. (2015). Combined free and forced convection in an enclosure with different ventilation arrangements. Procedia Engineering, 127, 1173-1180.
DOI: 10.1016/j.proeng.2015.11.456
Google Scholar
[11]
Hinojosa, J. F., Rodríguez, N. A., & Xamán, J. (2016). Heat transfer and airflow study of turbulent mixed convection in a ventilated cavity. Journal of Building Physics, 40(3), 204-234.
DOI: 10.1177/1744259115611640
Google Scholar
[12]
Yang, G., Huang, Y., Wu, J., Zhang, L., Chen, G., Lv, R., & Cai, A. (2017). Experimental study and numerical models' assessment of turbulent mixed convection heat transfer in a vertical open cavity. Building and Environment, 115, 91-103.
DOI: 10.1016/j.buildenv.2017.01.016
Google Scholar
[13]
Koufi, L., Younsi, Z., Cherif, Y., & Naji, H. (2017). Numerical investigation of turbulent mixed convection in an open cavity: Effect of inlet and outlet openings. Int. Journal of Thermal Sciences, 116,103-117. doi :10.1016/j.ijthermalsci.2017.02.007.
DOI: 10.1016/j.ijthermalsci.2017.02.007
Google Scholar
[14]
Mebarek-Oudina, F. (2017). Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Engineering Science and Technology, an International Journal, 20(4), 1324–1333.
DOI: 10.1016/j.jestch.2017.08.003
Google Scholar
[15]
Mebarek-Oudina, F. (2018). Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transfer-Asian Research.
DOI: 10.1002/htj.21375
Google Scholar
[16]
Kareem, A. K., & Gao, S. (2018). A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder. International Communications in Heat and Mass Transfer, 90, 44-55. doi : 10.1016/j.icheatmasstransfer.2017.10.016.
DOI: 10.1016/j.icheatmasstransfer.2017.10.016
Google Scholar
[17]
Atia, A., Ghernaout, B., Bouabdallah, S., (2018). Journal of Applied Fluid Mechanics, Vol. 11, No. 4, pp.1021-1031, 2018.
Google Scholar
[18]
Abbassi, M. A., Djebali, R., & Guedri, K. (2018). Effects of heater dimensions on nanofluid natural convection in a heated incinerator shaped cavity containing a heated block. Journal of Thermal Engineering, 4(3).
DOI: 10.18186/journal-of-thermal-engineering.411434
Google Scholar
[19]
Pordanjani, A. H., Aghakhani, S., Karimipour, A., Afrand, M., & Goodarzi, M. (2019). Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. Journal of Thermal Analysis and Calorimetry, 137(3), 997-1019. doi : 10.1007/s10973-018-7982-4.
DOI: 10.1007/s10973-018-7982-4
Google Scholar
[20]
Vahedi, S. M., Pordanjani, A. H., Wongwises, S., & Afrand, M. (2019). On the role of enclosure side walls thickness and heater geometry in heat transfer enhancement of water–Al2O3 nanofluid in presence of a magnetic field. Journal of Thermal Analysis and Calorimetry, 138(1), 679-696.
DOI: 10.1007/s10973-019-08224-6
Google Scholar
[21]
Mebarek-Oudina, F., & Bessaïh, R. (2019). Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources. Thermophysics and Aeromechanics, 26(3), 325–334.
DOI: 10.1134/s0869864319030028
Google Scholar
[22]
Laouira, H., Mebarek-Oudina, F., Hussein, A. K., Kolsi, L., Merah, A., & Younis, O. (2019). Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths. Heat Transfer-Asian Research.
DOI: 10.1002/htj.21618
Google Scholar
[23]
Mahanthesh, B., Lorenzini, G., Oudina, F. M., & Animasaun, I. L. (2019). Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces. Journal of Thermal Analysis and Calorimetry.
DOI: 10.1007/s10973-019-08985-0
Google Scholar
[24]
Raza, J., Mebarek-Oudina, F. and Mahanthesh, B. (2019), Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips,, Multidiscipline Modeling in Materials and Structures, Vol. 15 No. 5, pp.871-894. https://doi.org/10.1108/MMMS-11-2018-0183.
DOI: 10.1108/mmms-11-2018-0183
Google Scholar
[25]
Marzougui, S., Mebarek-Oudina, F., Assia, A., Magherbi, M., Shah, Z., & Ramesh, K. (2020). Entropy generation on magneto-convective flow of copper–water nanofluid in a cavity with chamfers. Journal of Thermal Analysis and Calorimetry, 1-12. https://doi.org/10.1007/s10973-020-09662-3.
DOI: 10.1007/s10973-020-09662-3
Google Scholar
[26]
Bouabdallah, S., Chati, D., Ghernaout, B., Atia, A., and Laouirate, A. (2016). Turbulent mixed convection in enclosure containing a circular/square heat source. International journal of Heat and Technology 34(3), 446-454.
DOI: 10.18280/ijht.340314
Google Scholar
[27]
Krane R. J. and Jessee J., (1983). Some detailed field measurements for a natural convection flow in a vertical square enclosure. Proceedings of the First ASME-JSME Thermal Engineering Joint Conference, Honolulu, 323-329.
Google Scholar