Water-Oil Separation Process Using a Porous Ceramic Membrane Module: An Investigation by CFD

Article Preview

Abstract:

Environmental concern has encouraged development related to polluted water treatment. Produced water originated from oil exploration has been submitted to different separation processes such as settling tanks, floaters, two-phase and three-phase separators, hydrocyclones, and membranes. On the use of membranes, the goal is to separate soluble components from solutions based on the size, charge, shape, and molecular interactions between the solute and membrane surface. In the present work, a numerical study was developed on the oil-water mixture separation process using a porous ceramic membrane module. The mathematical model used in this research is composed of mass and momentum conservation equations coupled to Darcy ́s law and SST k-ω turbulence model. Simulations were carried out employing the Ansys CFX commercial software. Results of the pressure, velocity, oil concentration distribution inside the device and membrane are presented and discussed. The results showed that the geometric aspects of the proposed microfiltration module and the membrane distribution within the separation module had a significant influence on the hydrodynamic flow leading to polarized layer dispersion.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. Fakhru'l-Razi, A. Pendashteh, L. C. Abdullah, D. R. A. Biak, S. S. Madaeni, & Z. Z. Abidin, Review of technologies for oil and gas produced water treatment. J. Hazardous Mater. 170 (2009) 530-551.

DOI: 10.1016/j.jhazmat.2009.05.044

Google Scholar

[2] E. T. Igunnu, and G. Z. Chen, Produced water treatment technologies. Int. J. Low-Carbon Technol. 9 (2014) 157-177.

Google Scholar

[3] S. Jiménez, M. M. Micó, M. Arnaldos, F. Medina, and S. Contreras. State of the art of produced water treatment. Chemosphere 192 (2018) 186-208.

DOI: 10.1016/j.chemosphere.2017.10.139

Google Scholar

[4] M. Padaki, R. S. Murali, M. S. Abdullah, N. Misdan, A. Moslehyani, M. A. Kassim, N. Hilal, and A. F. Ismail. Membrane technology enhancement in oil–water separation. A review. Desalination 357 (2015) 197-207.

DOI: 10.1016/j.desal.2014.11.023

Google Scholar

[5] A. Abdullah, D. Johnson, and N. Hilal. Investigations of the effect of pore size of ceramic membranes on the pilot-scale removal of oil from oil-water emulsion. J. Water Proc. Eng. 31 (2019) 100868.

DOI: 10.1016/j.jwpe.2019.100868

Google Scholar

[6] M. Z. Hu, B. L. Bischoff, M. E. Morales-Rodriguez, K. A. Gray, and B. H. Davison. Superhydrophobic or hydrophilic porous metallic/ceramic tubular membranes for continuous separations of biodiesel–water W/O and O/W emulsions. Ind. Eng. Chem. Res. 58(2) (2019) 1114-1122.

DOI: 10.1021/acs.iecr.8b04888

Google Scholar

[7] D. M. Warsinger, S. Chakraborty, E. W. Tow, M. H. Plumlee, C. Bellona, S. Loutatidou, L. Karimi, A review of polymeric membranes and processes for potable water reuse." Prog. polymer Sci. 81 (2018) 209-237.

DOI: 10.1016/j.progpolymsci.2018.01.004

Google Scholar

[8] Z. Jian-er, Q. Chang, Y. Wang, J. Wang, and G. Meng, Separation of stable oil–water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Separation Purification Technol. 75 (2010) 243-248.

DOI: 10.1016/j.seppur.2010.08.008

Google Scholar

[9] C. Xianfu, D. Zou, Y. Lin, W. Zhang, M. Qiu, and Y. Fan, Enhanced performance arising from low-temperature preparation of α-alumina membranes via titania doping assisted sol-gel method. J. Membrane Sci. 559 (2018) 19-27.

DOI: 10.1016/j.memsci.2018.04.032

Google Scholar

[10] A. K. Fard, A. Bukenhoudt, M. Jacobs, G. McKay, and M. A. Atieh, Novel hybrid ceramic/carbon membrane for oil removal. J. Membrane Sci. 559 (2018) 42-53.

DOI: 10.1016/j.memsci.2018.05.003

Google Scholar

[11] S. Saeed, M. Pishnamazi, M. Rezakazemi, A. Nouri, M. Jafari, S. Noroozi, and A. Marjani. Implementation of the finite element method for simulation of mass transfer in membrane contactors. Chem. Eng. Technol. 35 (2012) 1077-1084.

DOI: 10.1002/ceat.201100397

Google Scholar

[12] H. L. F. Magalhães, A. G. B. de Lima, S. R. de Farias Neto, H. G. Alves, and J. S. de Souza. Produced water treatment by ceramic membrane: A numerical investigation by computational fluid dynamics. Adv. Mech. Eng. 9 (2017) 1-20.

DOI: 10.1177/1687814016688642

Google Scholar

[13] A. Mohammad, and M. Rezakazemi. Computational fluid dynamics simulation of moving-bed nanocatalytic cracking process for the lightening of heavy crude oil. J. Porous Media 21 (2018) 539-553.

DOI: 10.1615/jpormedia.v21.i6.40

Google Scholar

[14] ANSYS Fluent Theory Guide 15.0. ANSYS, Canonsburg, PA 33 (2013).

Google Scholar

[15] F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (1994) 1598-1605.

DOI: 10.2514/3.12149

Google Scholar

[16] D. C. Wilcox, Turbulence modeling for CFD. Vol. 2. La Canada, CA: DCW industries, (1998).

Google Scholar

[17] B. E. Launder, and B. S. Dudley, Mathematical models of turbulence. No. BOOK. Academic press, (1972).

Google Scholar

[18] ANSYS CFX 15, Solver Theory Guide, ANSYS, Canonsburg, PA 33 (2015).

Google Scholar

[19] A. L. Cunha, Treatment of effluents from the oil industry via ceramic membranes - modeling and simulation. Doctoral Thesis in Process Engineering, Federal University of Campina Grande, Campina Grande, Paraiba, Brazil, (2014) 201p. (In Portuguese).

DOI: 10.21475/ajcs.2016.10.10.p7455

Google Scholar