Intermetallics Disappearance Rate Analysis in Double Multiphase Systems

Article Preview

Abstract:

Electric corrosion of aluminium and copper is investigated experimentally. It is found that the electric corrosion of copper is higher than the electric corrosion of aluminium. It is also clarified that the intrinsic diffusion coefficient of Cu is higher than the intrinsic diffusion coefficient of Al in each phase, so inert markers move to Cu. Copper has a higher electric conductivity, higher thermal conduction, and lower material cost than gold, so it is possible to use Cu instead of Au for wire bonding in microelectronics packaging, because the thin Al pad (1.2 μm thickness) can prevent gold and copper corrosion. Intermetallics disappearance and Kirkendall shift rates calculation methods are proposed. Methods involve mass conservation law and concentration profiles change during mutual diffusion. Intermetallics disappearance and Kirkendall shift rates in Al-Cu (Al is thin layer on Cu), Cu-Al (Cu is thin layer on Al), Al-Au, Zn-Cu, and Cu-Sn systems are analyzed theoretically using literature experimental data. Diffusion activation energies and pre-exponential coefficients for Cu-Sn system were calculated combining literature experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-86

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.N. Pimenov, K.A. Akkushkarova, and Yu.E. Ugaste, Mutual diffusion in the beta phase of the system copper – aluminium, Fizika metallov i metalloved. 39(4) (1975) 821-827.

Google Scholar

[2] C.S. Goh, W.L.E. Chong, T.K. Lee, and C. Breach, Corrosion Study and Intermetallics Formation in Gold and Copper Wire Bonding in Microelectronics Packaging, Crystals 3(3) (2013) 391-404 (https://doi.org/10.3390/cryst3030391).

DOI: 10.3390/cryst3030391

Google Scholar

[3] V.I. Neverov, Yu.E. Ugaste, Investigation of mass-transfer in metals contact zone, Fizika i Khimia obrabotki materialov 5 (1992) 113-118.

Google Scholar

[4] K.P. Gurov, A.M. Gusak, and M.V. Yarmolenko, Constancy of the Flow in a Growing Intermetallic Layer Under Conditions of Interdiffusion, Metallofizika 10(3) (1988) 91-92 (https://mfint.imp.kiev.ua/ru/toc/v10/i05.html).

Google Scholar

[5] V.V. Bogdanov, A.M. Gusak, L.N. Paritskaya, and M.V. Yarmolenko, Internal stress influence on diffusion phase growth in cylindrical samples of Cu-Zn system, Metallofizika 12(3) (1990) 60-66.

Google Scholar

[6] V.V. Bogdanov, L.N. Paritskaya, and M.V. Yarmolenko, Internal stress influence on diffusion phase growth in cylindrical samples of Cu-Zn system, Metallofizika 12(5) (1990) 98-104.

Google Scholar

[7] M.V. Yarmolenko, A.M. Gusak, and K.P. Gurov, A model of growth of an intermediate phase in bi- and polycrystals, Journal of Engineering Physics and Thermophysics 65 (1993) 876-881 (https://doi.org/10.1007/BF00862930).

DOI: 10.1007/bf00862930

Google Scholar

[8] M.V. Yarmolenko, Describing the Diffusion Phase Growth in Polycrystals: Analytical Solution, Defect and Diffusion Forum 143-147 (1997) 1567-1572 (https://doi.org/10.4028/www.scientific.net/DDF.143-147.1567).

DOI: 10.4028/www.scientific.net/ddf.143-147.1567

Google Scholar

[9] M.V. Yarmolenko, Analytically Solvable Differential Diffusion Equations Describing the Intermediate Phase Growth, Metallofiz. Noveishie Tekhnol. 40(9) (2018) 1201-1207 (.

DOI: 10.15407/mfint.40.09.1201

Google Scholar

[10] J.C. Fisher, Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion, J. Appl. Phys. 22(1) (1951) 1699825 (https://doi.org/10.1063/1.1699825).

Google Scholar

[11] M.V. Yarmolenko, Intermediate phase cone growth kinetics along dislocationpipes inside polycrystal grains, AIP Advances 8, (2018) 095202-1 - 095202-5 (https://doi.org/10.1063/1.5041728).

DOI: 10.1063/1.5041728

Google Scholar

[12] A.D. Le Claire and A. Rabinovich, A mathematical analysis of diffusion in dislocations. II. Influence at low densities on measured diffusion coefficients, J. Phys. C: Solid State Phys. 15 (1982) 5727 (https://iopscience.iop.org/article/10.1088/0022-3719/15/16/007).

DOI: 10.1088/0022-3719/15/27/527

Google Scholar

[13] A.M. Gusak and M.V. Yarmolenko, A simple way of describing the diffusion phase growth in cylindrical and spherical samples, J. Appl. Phys. 73(10), (1993) 4881-4884 (https://doi.org/10.1063/1.353805).

DOI: 10.1063/1.353805

Google Scholar

[14] M.V. Yarmolenko, Deviation from Parabolic Growth of Phase Layers in Cylindrical and Spherical Samples: Curvature and Internal Stress Influence, in: Proceedings of PTM-1994, W.C. Johnson, J.M. Howe, D.E. Laughlin, and W.A. Soffa (The Minerals, Metals & Materials Society, Pennsylvania, 1994), pp.1177-1182 (https://publons.com/publon/3639123/).

Google Scholar

[15] M.V. Yarmolenko, Stress in spherical samples with mutual diffusion, Izvestiya AN SSSR. Metally 3 (1990) 187-192 (https://publons.com/publon/2915981/).

Google Scholar

[16] M.V. Yarmolenko, The Kirkendall effect: analytical solution and Monte Carlo modeling, Defect and Diffusion Forum 143-147 (1997) 509-513 (https://doi.org/10.4028/www.scientific.net/DDF.143-147.509).

DOI: 10.4028/www.scientific.net/ddf.143-147.509

Google Scholar

[17] L.S. Darken, Diffusion, Mobility and Their Interrelation through Free Energy in Binary Metallic Systems, Trans. A.I.M.E. 175 (1948) 184 – 201.

Google Scholar

[18] S. Kumar, C. A. Handwerker, and M. A. Dayananda, Intrinsic and Interdiffusion in Cu-Sn System, JPEDAV 32 (2011) 309–319 (.

DOI: 10.1007/s11669-011-9907-9

Google Scholar

[19] A. Paul, C. Ghosh, and W.J. Boettinger, Diffusion Parameters and Growth Mechanism of Phases in the Cu-Sn System, Metallurgical and materials transactions A 42A (2011) 952-963 (.

DOI: 10.1007/s11661-010-0592-9

Google Scholar

[20] S. Fürtauer, D. Li, D. Cupid, and H. Flandorfera, The Cu–Sn phase diagram, Part I: New experimental results, Intermetallics (Barking) 34 (2013) 142–147 (.

DOI: 10.1016/j.intermet.2012.10.004

Google Scholar

[21] F.J.J. Van Loo, On the Determination of Diffusion Coefficients in a Binary Metal System, Acta Metall., 18(10) (1970) 1107-1111.

DOI: 10.1016/0001-6160(70)90009-x

Google Scholar

[22] A.G. Guy, Treatment of Diffusion Considering Changes in Atomic Volume, Scripta Metall., 5(4) (1971) 279-281.

DOI: 10.1016/0036-9748(71)90194-3

Google Scholar

[23] C. Wagner, Evaluation of Data Obtained with Diffusion Couples of Binary Single-Phase and Multiphase Systems, Acta Metall. 17(2) (1969) 99-107.

DOI: 10.1016/0001-6160(69)90131-x

Google Scholar

[24] M.A. Dayananda, Average Effective Interdiffusion Coefficients in Binary and Multicomponent Alloys, Defect Diffus. Forum, 95-98 (1993) 521-536 (https://www.scientific.net/DDF.95-98.521).

DOI: 10.4028/www.scientific.net/ddf.95-98.521

Google Scholar

[25] A. Gueydan, B. Domenges, and E. Hug, Study of the intermetallic growth in copper-clad aluminum wires after thermal aging, Intermetallics 50 (2014) 34-42 (.

DOI: 10.1016/j.intermet.2014.02.007

Google Scholar

[26] M. Onishi and M. Fujibuchi, Reaction-Diffusion in the Cu-Sn System, Trans. Jpn. Inst. Met. 16 (1975) 539-547.

DOI: 10.2320/matertrans1960.16.539

Google Scholar

[27] O. Liashenko, A. M. Gusak, F. Hodaj, Phase growth competition in solid/liquid reactions between copper or Cu3Sn compound and liquid tin-based solder, J Mater Sci: Mater Electron 25(10) (2014) 4664-4672 (DOI 10.1007/s10854-014-2221-7).

DOI: 10.1007/s10854-014-2221-7

Google Scholar

[28] T. Heumann, Z. Physik. Chem., 201 (1952) 168-189 (in German).

Google Scholar

[29] A.D. Smigelkas and E.O. Kirkendall, Zinc diffusion in alpha brass, Trans. AIME 171 (1947) 130-134.

Google Scholar

[30] P. P. Fedorov and S. N. Volkov, Au–Cu Phase Diagram, Russian Journal of Inorganic Chemistry 61(6) (2016) 772-775 (.

DOI: 10.1134/s0036023616060061

Google Scholar

[31] Y. Funamizu and K. Watanabe, Interdiffusion in the Al–Cu System, Transactions of the Japan Institute of Metals, 12(3) (1971) 147-152 ( https://doi.org/10.2320/matertrans1960.12.147).

DOI: 10.2320/matertrans1960.12.147

Google Scholar

[32] T. Kizaki, M. O, and M. Kajihara, Rate-Controlling Process of Compound Growth in Cu-Clad Al Wire during Isothermal Annealing at 483-543K, Materials Transactions 61(1) (2020) 188-194 (.

DOI: 10.2320/matertrans.mt-m2019207

Google Scholar

[33] F. Moisy, X. Sauvage, E. Hug, Investigation of the early stage of reactive interdiffusion in the Cu-Al system by in-situ transmission electron microscopy, Materialia 9 (2020) 100633 (https://doi.org/10.1016/j.mtla.2020.100633).

DOI: 10.1016/j.mtla.2020.100633

Google Scholar

[34] D. Liu , L. Zhang , Y. Du , H. Xu , S. Liu , L. Liu , Assessment of atomic mobilities of Al and Cu in fcc Al-Cu alloys, CALPHAD Comput. Coupl. Phase Diagrams Thermochem. 33 (2009) 761–768 (https://doi.org/10.1016/j.calphad.2009.10.004).

DOI: 10.1016/j.calphad.2009.10.004

Google Scholar

[35] A. Paul , T. Laurila , V. Vuorinen , S.V. Divinski , Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer Cham Heildelberg New York Dordrecht London (2014) (.

DOI: 10.1007/978-3-319-07461-0

Google Scholar

[36] G.B. Gibbs, Diffusion layer growth in a binary system, Journal of Nuclear Materials 20(3) (1966) 303-306 (https://doi.org/10.1016/0022-3115(66)90042-0).

DOI: 10.1016/0022-3115(66)90042-0

Google Scholar

[37] V. V. Morozovych, A. R. Honda, Yu. O. Lyashenko, Ya. D. Korol, O. Yu. Liashenko, С. Cserhati, and A. M. Gusak, Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin, Metallofiz. Noveishie Tekhnol. 40(12) (2018) 1649–1673 (.

DOI: 10.15407/mfint.40.12.1649

Google Scholar

[38] A. M. Gusak, O. Yu. Liashenko, F. Hodaj, Intermediate phase competition in diffusion zone, Fizika i Khimia obrabotki materialov 2 (2018) 37-47 (DOI:10.30791/0015-3214-2018-2-37-47). [39] B. Camin and L. Hansen, In Situ 3D-µ-Tomography on Particle-Reinforced Light Metal Matrix Composite Materials under Creep Conditions, Metals, 10(8) (2020) 1034 (.

DOI: 10.3390/met10081034

Google Scholar

[40] M. V. Yarmolenko, Copper and aluminum electric corrosion investigation and intermetallics disappearance in Cu-Al system analysis, Physics and Chemistry of Solid State, 21(2) (2020) 294-299 (https://doi.org/10.15330/pcss.21.2.294-299).

DOI: 10.15330/pcss.21.2.294-299

Google Scholar