[1]
V. Alvarado and E. Manrique, Enhanced Oil Recovery: An Update Review, Energies. 3 (2010) 1529–1575.
DOI: 10.3390/en3091529
Google Scholar
[2]
S.Q. Tunio, A.H. Tunio, N.A. Ghirano, Z.M. El Adawy, Comparison of Different Enhanced Oil Recovery Techniques for Better Oil Productivity, Int. J. Appl. Sci. Technol. 1 (2011) 143–153.
Google Scholar
[3]
H.A. Yousefvand, A. Jafari, Stability and flooding analysis of nanosilica/ NaCl /HPAM/SDS solution for enhanced heavy oil recovery, J. Pet. Sci. Eng., 162 (2018) 283–291.
DOI: 10.1016/j.petrol.2017.09.078
Google Scholar
[4]
E. Esmaeilnezhad, S. Le Van, B. Hyun, H. Jin, M. Schaf, M. Gholizadeh, M. Ranjbar, An experimental study on enhanced oil recovery utilizing nanoparticle ferrofluid through the application of a magnetic field, J. Ind. Eng. Chem. 58 (2018) 319–327.
DOI: 10.1016/j.jiec.2017.09.044
Google Scholar
[5]
Y.K. Dasan, B.H. Guan, M.H. Zahari, L.K. Chuan, Influence of La3+substitution on structure, morphology and magnetic properties of nanocrystalline Ni-Zn ferrite, PLoS One. 12 (2017) 1–14.
DOI: 10.1371/journal.pone.0170075
Google Scholar
[6]
R.P. Patil, S.D. Delekar, D.R. Mane, P.P. Hankare, Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite, Results in Physics. 3 (2013) 129–133.
DOI: 10.1016/j.rinp.2013.08.002
Google Scholar
[7]
N. Kothari, B. Raina, K. Chandak, V. Iyer, H. Mahajan, Application of Ferrofluid for Enhanced Surfactant Flooding in EOR, SPE Int. (2010) 1–7.
DOI: 10.2118/131272-ms
Google Scholar
[8]
C. Negin, S. Ali, Q. Xie, Application of nanotechnology for enhancing oil recovery – A review, Petroleum. 2, (2016) 324–333.
DOI: 10.1016/j.petlm.2016.10.002
Google Scholar
[9]
H. Divandari, A. Hemmati-sarapardeh, M. Scha, M. Ranjbar, Integrating synthesized citric acid-coated magnetite nanoparticles with magnetic fields for enhanced oil recovery: Experimental study and mechanistic understanding, J. Pet. Sci. Eng. 174, (2019) 425–436.
DOI: 10.1016/j.petrol.2018.11.037
Google Scholar
[10]
M. Kooti, A.N. Sedeh, Glycine-assisted fabrication of zinc and manganese ferrite nanoparticles, Sci. Iran. 19, (2012) 930–933.
DOI: 10.1016/j.scient.2012.02.020
Google Scholar
[11]
D. Ni, Z. Lin, P. Xiaoling, W. Xinqing, G. Hongliang, Preparation and Characterization of Manganese-Zinc Ferrites by a Solvothermal Method, Rare Met. Mater. Eng., 44, (2015) 1062–1066.
DOI: 10.1016/s1875-5372(15)30067-9
Google Scholar
[12]
F.M. Ismail, M. Ramadan, A.M. Abdellah, I. Ismail, N.K. Allam, Mesoporous spinel manganese zinc ferrite for high-performance supercapacitors, J. Electroanal. Chem., 817, (2018) 111–117.
DOI: 10.1016/j.jelechem.2018.04.002
Google Scholar
[13]
H. Bakhshi, N. Vahdati, A. Sedghi, Y. Mozharivskyj, Comparison of the effect of nickel and cobalt cations addition on the structural and magnetic properties of manganese-zinc ferrite nanoparticles, J. Magn. Magn. Mater., 474, (2019) 56–62.
DOI: 10.1016/j.jmmm.2018.10.146
Google Scholar
[14]
M. Khairy, Polyaniline–Zn0.2Mn0.8 Fe2O4 ferrite core–shell composite: Preparation, characterization and properties, J. Alloys Compd. 608, (2014) 283–291.
DOI: 10.1016/j.jallcom.2014.04.130
Google Scholar
[15]
K. Youl, S. Jin, Y. Chen, J. Ho, S.L. Bryant, R.S. Ruoff, C. Huh, K.P. Johnston, Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions, J. Colloid Interface Sci. 403, (2013) 1–6.
DOI: 10.1016/j.jcis.2013.03.012
Google Scholar
[16]
A.N. El-hoshoudy, S.E.M. Desouky, A.M. Al-sabagh, M.A. Betiha, Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate, Egypt. J. Pet. 26, (2017) 779–785.
DOI: 10.1016/j.ejpe.2016.10.012
Google Scholar
[17]
M. AfzaliTabar, M. Alaei, M. Bazmi, R. Ranjineh Khojasteh, M. Koolivand-Salooki, F. Motiee, A.M. Rashidi, Facile and economical preparation method of nanoporous graphene/silica nanohybrid and evaluation of its Pickering emulsion properties for Chemical Enhanced oil Recovery (C-EOR), Fuel. 206, (2017) 453–466.
DOI: 10.1016/j.fuel.2017.05.102
Google Scholar
[18]
D.C. Standnes, T. Austad, Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants, J. Pet. Sci. Eng. 28, (2000) 123–143.
DOI: 10.1016/s0920-4105(00)00084-x
Google Scholar
[19]
S. Kumar, A. Mandal, Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery, Appl. Surf. Sci. 372, (2016) 42–51.
DOI: 10.1016/j.apsusc.2016.03.024
Google Scholar