[1]
L.J.R. Nunes, T.P. Causer, D. Ciolkosz, Biomass for energy: A review on supply chain management models, Renew. Sustain. Energy Rev. 120 (2020).
DOI: 10.1016/j.rser.2019.109658
Google Scholar
[2]
F. Sher, S.Z. Iqbal, H. Liu, M. Imran, C.E. Snape, Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources, Energy Convers. Manag. (2019).
DOI: 10.1016/j.enconman.2019.112266
Google Scholar
[3]
B. Acharya, I. Sule, A.J.B.C. Dutta, Biorefinery, A review on advances of torrefaction technologies for biomass processing, 2 (2012) 349-369.
DOI: 10.1007/s13399-012-0058-y
Google Scholar
[4]
R.D.B. J.S. Wright, R.J. Hess, S. Sokhansanj,, Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development.
DOI: 10.2172/991885
Google Scholar
[5]
W.-H. Chen, H.-C. Hsu, K.-M. Lu, W.-J. Lee, T.-C. Lin, Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass, Energy, 36 (2011) 3012-3021.
DOI: 10.1016/j.energy.2011.02.045
Google Scholar
[6]
M. Phanphanich, S. Mani, Impact of torrefaction on the grindability and fuel characteristics of forest biomass, Bioresource Technology, 102 (2011) 1246-1253.
DOI: 10.1016/j.biortech.2010.08.028
Google Scholar
[7]
T.G. Bridgeman, J.M. Jones, I. Shield, P.T. Williams, Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties, Fuel, 87 (2008) 844-856.
DOI: 10.1016/j.fuel.2007.05.041
Google Scholar
[8]
Y. Mei, R. Liu, Q. Yang, H. Yang, J. Shao, C. Draper, S. Zhang, H. Chen, Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas, Bioresour. Technol. 177 (2015) 355–360.
DOI: 10.1016/j.biortech.2014.10.113
Google Scholar
[9]
D. Chen, A. Gao, Z. Ma, D. Fei, Y. Chang, C. Shen, In-depth study of rice husk torrefaction: Characterization of solid, liquid and gaseous products, oxygen migration and energy yield, Bioresour. Technol. 253 (2018).
DOI: 10.1016/j.biortech.2018.01.009
Google Scholar
[10]
S.X. Li, C.Z. Chen, M.F. Li, X. Xiao, Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres, Bioresour. Technol. 249 (2018) 348–353.
DOI: 10.1016/j.biortech.2017.10.026
Google Scholar
[11]
N. Soponpongpipat, D. Sittikul, P. Comsawang, Prediction model of higher heating value of torrefied biomass based on the kinetics of biomass decomposition, J. Energy Inst. 89 (2016) 425–435.
DOI: 10.1016/j.joei.2015.02.011
Google Scholar
[12]
P. Comsawang, S. Nanetoe, N. Soponpongpipat, Co-Firing of Sawdust and Liquid Petroleum Gas in the Application of a Modified Rocket Stove, Processes. 8 (2020).
DOI: 10.3390/pr8010112
Google Scholar
[13]
N. Tharawadee, N. Thuchayapong, Effects of Torrefaction Process on Physical Properties and Operating Cost of Biomass Powder, J. Res. Appl. Mech. Eng. 3 (2015).
Google Scholar
[14]
N. Soponpongpipat, S. Nanetoe, P. Comsawang, Thermal Degradation of Cassava Rhizome in Thermosyphon-Fixed Bed Torrefaction Reactor, Processes. 8 (2020).
DOI: 10.3390/pr8030267
Google Scholar
[15]
M.W. Islam, A review of dolomite catalyst for biomass gasification tar removal, Fuel. 267 (2020).
DOI: 10.1016/j.fuel.2020.117095
Google Scholar
[16]
O. Tursunov, B. Mirzaev, D. Kodirov, A SUCCINCT REVIEW OF CATALYST DOLOMITE ANALYSIS FOR BIOMASS-MSW PYROLYSIS/GASIFICATION, (2019).
Google Scholar
[17]
M.A.A. Mohammed, A. Salmiaton, W.A.K.G. Wan Azlina, M.S. Mohamad Amran, Y.H. Taufiq-Yap, Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process, J. Energy. 2013 (2013).
DOI: 10.1155/2013/791582
Google Scholar
[18]
M. Hervy, R. Olcese, M.M. Bettahar, M. Mallet, A. Renard, L. Maldonado, D. Remy, G. Mauviel, A. Dufour, Evolution of dolomite composition and reactivity during biomass gasification, Appl. Catal. A Gen. 572 (2019) 97–106.
DOI: 10.1016/j.apcata.2018.12.014
Google Scholar
[19]
C. Berrueco, D. Montané, B. Matas Güell, G. del Alamo, Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed, Energy. 66 (2014) 849–859.
DOI: 10.1016/j.energy.2013.12.035
Google Scholar
[20]
H. Karatas, H. Olgun, F. Akgun, Coal and coal and calcined dolomite gasification experiments in a bubbling fluidized bed gasifier under air atmosphere, Fuel Process. Technol. 106 (2013) 666–672.
DOI: 10.1016/j.fuproc.2012.09.063
Google Scholar
[21]
M. Baratieri, E. Pieratti, T. Nordgreen, M. Grigiante, Biomass Gasification with Dolomite as Catalyst in a Small Fluidized Bed Experimental and Modelling Analysis, Waste and Biomass Valorization. 1 (2010) 283–291.
DOI: 10.1007/s12649-010-9034-6
Google Scholar
[22]
J.M. de Andrés, A. Narros, M.E. Rodríguez, Behaviour of dolomite, olivine and alumina as primary catalysts in air–steam gasification of sewage sludge, Fuel. 90 (2011) 521–527.
DOI: 10.1016/j.fuel.2010.09.043
Google Scholar