[1]
D. Greaves, G. Iglesias, Wave and Tidal Energy, first ed., John Wiley & Sons, Great Britain, (2018).
Google Scholar
[2]
K. Kaygusuz, Energy for sustainable development: key issues and challenges. Energy Sources B Energy Econ Plann 2007;2(1):73-83.
DOI: 10.1080/15567240500402560
Google Scholar
[3]
A.F.O. Falcão, J.C.C. Henriques, Oscillating-water-column wave energy converters and air turbines: A review, Renewable Energy. 85 (2016) 1391-1424.
DOI: 10.1016/j.renene.2015.07.086
Google Scholar
[4]
S. Barstow, G. Mork, D. Mollison, J. Cruz, The wave energy resource, J. Cruz (Ed.), Ocean Wave Energy, Springer, Berlin, 2008, pp.93-132.
DOI: 10.1007/978-3-540-74895-3_4
Google Scholar
[5]
A. Iturrioz, R. Guanche, J.L. Lara, C. Vidal, I.J. Losada, Validation of Open FOAM® for Oscillating Water Column three-dimensional modeling, Ocean Engineering. 107 (2015) 222–236.
DOI: 10.1016/j.oceaneng.2015.07.051
Google Scholar
[6]
J. Cruz, A. Sarmento, Wave Energy - Introdução aos Aspectos Tecnológicos, Econômicos e Ambientais, Institute of Ambiente, Alfragide, (2004).
Google Scholar
[7]
A.E. Khalihg, O.C. Onar, Energy Harvesting: Solar, Wind and Ocean Energy Conversion Systems, Taylor & Francis, London, (2010).
Google Scholar
[8]
M.N. Gomes, M.F.E. Lara, S.L.P. Iahnke, B.N. Machado, M.M. Goulart, F.M. Seibt, E.D. Santos, L.A. Isoldi, L.A.O. Rocha, Numerical Approach of the Main Physical Operational Principle of Several Wave Energy Converters: Oscillating Water Column, Overtopping and Submerged Plate, Defect Diffus. Forum 362 (2015) 115-171.
DOI: 10.4028/www.scientific.net/ddf.362.115
Google Scholar
[9]
A.F. Miguel, M. Aydin, Ocean exergy and energy conversion systems, International Journal of Exergy 10 (2012) 454-470.
DOI: 10.1504/ijex.2012.047507
Google Scholar
[10]
C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201-225.
DOI: 10.1016/0021-9991(81)90145-5
Google Scholar
[11]
J.M.P. Conde, L.M.C. Gato, Numerical study of the air-flow in an oscillating water column wave energy converter. Renewable Energy, 33 (2008) 2637-2644.
DOI: 10.1016/j.renene.2008.02.028
Google Scholar
[12]
M. das N. Gomes, C.R. Olinto, L.A.O. Rocha, J.A. Souza, L.A. Isoldi, Computational modeling of a regular wave tank. Therm. Eng. 8 (2009) 44-50.
DOI: 10.1109/mcsul.2009.27
Google Scholar
[13]
Z. Liu, B. Hyun, K. Hong, Numerical study of air chamber for oscillating water column wave energy convertor, China Ocean Eng. 25 (2011) 169-178.
DOI: 10.1007/s13344-011-0015-8
Google Scholar
[14]
J.C. Martins, M.M. Goulart, M. das N. Gomes, J.A. Souza, L.A.O. Rocha, L.A. Isoldi, E.D. dos Santos, Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design, Renewable Energy 118 (2018) 727-741.
DOI: 10.1016/j.renene.2017.11.061
Google Scholar
[15]
R.H. Tseng, R.H. Wu, C.C. Huang, Model study of a shoreline Wave-power system, Ocean Engineering, v. 27 (2000) pp.801-821.
DOI: 10.1016/s0029-8018(99)00028-1
Google Scholar
[16]
N. Dizadji, S.E. Sajadian, Modeling and optimization of the chamber of OWC system. Energy 36 (2011), 2360-2366.
DOI: 10.1016/j.energy.2011.01.010
Google Scholar
[17]
Y. Zhang, Q.P. Zou, D. Greaves, Air-water two-phase flow modelling of hydrodynamic performance of an oscillating water column device. Renewable Energy, v.41 (2012) pp.159-170.
DOI: 10.1016/j.renene.2011.10.011
Google Scholar
[18]
U. Senturk, A. Ozdamar, A., Wave energy extraction by na oscillating water column with a gap on the fully submerged front wall. Applied Ocean Research. V. 37 (2012) pp.174-182.
DOI: 10.1016/j.apor.2012.05.004
Google Scholar
[19]
B. Bouali, S. Larbi, Contribution to geometry optimization of an oscillating water column wave energy converter. Energy Procedi., V. 36 (2013) pp.565-573.
DOI: 10.1016/j.egypro.2013.07.065
Google Scholar
[20]
G. Lorenzini, M.F.E. Lara, L.A.O. Rocha, M.N. Gomes, E.D. Santos, L.A. Isoldi, Constructal design applied to the study of the geometry and submergence of an oscillating water column. International Journal of Heat and Technology, v.33 n.2 (2015) pp.31-38.
DOI: 10.18280/ijht.330205
Google Scholar
[21]
M.N. Gomes, G. Lorenzini, L.A.O. Rocha, E.D. Santos, L.A. Isoldi, Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods. Journal of Engineering Thermophysics, v.27 n.2 (2018) pp.1-18.
DOI: 10.1134/s1810232818020042
Google Scholar
[22]
M.N. Gomes, M.J. Deus, E.D. Santos, L.A. Isoldi, L.A.O. Rocha, Analysis of the Geometric Constraints Employed in Constructal Design for Oscillating Water Column Devices Submitted to the Wave Spectrum Through a Numerical Approach. Defect and Diffusion Forum, v.390 (2019) pp.193-210.
DOI: 10.4028/www.scientific.net/ddf.390.193
Google Scholar
[23]
A. Bejan, Shape and Structure: From Engineering to Nature. Cambridge University Press, New York, (2000).
Google Scholar
[24]
A. Bejan, S. Lorente, Design with Constructal Theory, John Wiley & Sons, New Jersey, (2008).
Google Scholar
[25]
A. Bejan, Design in Nature, Doulbeday, New York, (2012).
Google Scholar
[26]
A. Bejan, S. Lorente, Constructal Law of Design and Evolution: Physics, Biology, Technology, and Society, J. Appl. Phys. 113 (2013) 151301-1 – 151301-20.
DOI: 10.1063/1.4798429
Google Scholar
[27]
A. Bejan, The physics of life: the evolution of everything, St. Martins Press, New York, USA, (2016).
Google Scholar
[28]
Ansys,2016. Theory Guide FLUENT 2016,.
Google Scholar
[29]
H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, The Finite Volume Method, Longman, England, (1995).
Google Scholar
[30]
X. Lv, Q. Zou, D. Reeve, Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method, Adv. Water Resour. 34 (2011) 1320-1334.
DOI: 10.1016/j.advwatres.2011.06.009
Google Scholar
[31]
Schlichting, H., Boundary-layer theory, McGraw-Hill, New York, USA, (1979).
Google Scholar
[32]
S.K. Chakrabarti, Handbook of Offshore Engineering. Elsevier, Amsterdam, London, (2005).
Google Scholar
[33]
M. Folley, T. Whittaker, Validating a spectral-domain model of an OWC using physical model data, International Journal of Marine Energy, V. 2 (2013), p.1–11.
DOI: 10.1016/j.ijome.2013.05.003
Google Scholar
[34]
R.G. Dean, R.A. Dalrymple, Water Wave Mechanics for Engineers and Scientists, World Scientific, Singapore, (1991).
Google Scholar
[35]
E. Kreyszig, H. Kreyszig, E. J. Norminton, Advanced Engineering Mathematics, John Wiley & Sons, USA, 10a ed., (2011).
Google Scholar
[36]
R. dos S. Ramalhais, Estudo numérico de um dispositivo de conversão da energia das ondas do tipo coluna de água oscilante (CAO), MSc. Thesis in Mechanical Engineering, University Nova de Lisboa, Lisboa, (2011).
DOI: 10.26678/abcm.creem2020.cre2020-0095
Google Scholar