Constructal Design Applied to Geometric Shapes Analysis of Wave Energy Converters

Article Preview

Abstract:

This paper deals with numerical simulation and the geometrical analysis of an ocean Wave Energy Converter (WEC), which has as the operating principle the Oscillating Water Column (OWC). The goal was to evaluate the geometric shape influence of the OWC chamber in the hydropneumatic power available. Therefore, four geometric shapes were analyzed: i) Rectangle (RT), ii) Trapezium (TP), iii) Inverted Trapezium (TI) and iv) Double Trapezium (DT). For this, the OWC device was subject to a JONSWAP wave spectrum with peak period (TS) equal to 7.5 s and peak wave height (HS) equal to 1.5 m. To do so, Constructal Design was employed varying the Degree Of Freedom (DOF) H1/L (ratio between the height and length of the OWC chamber entrance). The problem constraints were the entrance area and the total area of the OWC chamber that were kept constant. For the numerical solution a Computational Fluid Dynamics (CFD) code, based on the Finite Volume Method (FVM),de0 was used. The multiphase Volume of Fluid (VOF) model was applied to tackle with the water-air interaction. The results indicated that when the Rectangle (RT) geometrical shape was employed an improvement of nearly 99% was achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-160

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Greaves, G. Iglesias, Wave and Tidal Energy, first ed., John Wiley & Sons, Great Britain, (2018).

Google Scholar

[2] K. Kaygusuz, Energy for sustainable development: key issues and challenges. Energy Sources B Energy Econ Plann 2007;2(1):73-83.

DOI: 10.1080/15567240500402560

Google Scholar

[3] A.F.O. Falcão, J.C.C. Henriques, Oscillating-water-column wave energy converters and air turbines: A review, Renewable Energy. 85 (2016) 1391-1424.

DOI: 10.1016/j.renene.2015.07.086

Google Scholar

[4] S. Barstow, G. Mork, D. Mollison, J. Cruz, The wave energy resource, J. Cruz (Ed.), Ocean Wave Energy, Springer, Berlin, 2008, pp.93-132.

DOI: 10.1007/978-3-540-74895-3_4

Google Scholar

[5] A. Iturrioz, R. Guanche, J.L. Lara, C. Vidal, I.J. Losada, Validation of Open FOAM® for Oscillating Water Column three-dimensional modeling, Ocean Engineering. 107 (2015) 222–236.

DOI: 10.1016/j.oceaneng.2015.07.051

Google Scholar

[6] J. Cruz, A. Sarmento, Wave Energy - Introdução aos Aspectos Tecnológicos, Econômicos e Ambientais, Institute of Ambiente, Alfragide, (2004).

Google Scholar

[7] A.E. Khalihg, O.C. Onar, Energy Harvesting: Solar, Wind and Ocean Energy Conversion Systems, Taylor & Francis, London, (2010).

Google Scholar

[8] M.N. Gomes, M.F.E. Lara, S.L.P. Iahnke, B.N. Machado, M.M. Goulart, F.M. Seibt, E.D. Santos, L.A. Isoldi, L.A.O. Rocha, Numerical Approach of the Main Physical Operational Principle of Several Wave Energy Converters: Oscillating Water Column, Overtopping and Submerged Plate, Defect Diffus. Forum 362 (2015) 115-171.

DOI: 10.4028/www.scientific.net/ddf.362.115

Google Scholar

[9] A.F. Miguel, M. Aydin, Ocean exergy and energy conversion systems, International Journal of Exergy 10 (2012) 454-470.

DOI: 10.1504/ijex.2012.047507

Google Scholar

[10] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201-225.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[11] J.M.P. Conde, L.M.C. Gato, Numerical study of the air-flow in an oscillating water column wave energy converter. Renewable Energy, 33 (2008) 2637-2644.

DOI: 10.1016/j.renene.2008.02.028

Google Scholar

[12] M. das N. Gomes, C.R. Olinto, L.A.O. Rocha, J.A. Souza, L.A. Isoldi, Computational modeling of a regular wave tank. Therm. Eng. 8 (2009) 44-50.

DOI: 10.1109/mcsul.2009.27

Google Scholar

[13] Z. Liu, B. Hyun, K. Hong, Numerical study of air chamber for oscillating water column wave energy convertor, China Ocean Eng. 25 (2011) 169-178.

DOI: 10.1007/s13344-011-0015-8

Google Scholar

[14] J.C. Martins, M.M. Goulart, M. das N. Gomes, J.A. Souza, L.A.O. Rocha, L.A. Isoldi, E.D. dos Santos, Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design, Renewable Energy 118 (2018) 727-741.

DOI: 10.1016/j.renene.2017.11.061

Google Scholar

[15] R.H. Tseng, R.H. Wu, C.C. Huang, Model study of a shoreline Wave-power system, Ocean Engineering, v. 27 (2000) pp.801-821.

DOI: 10.1016/s0029-8018(99)00028-1

Google Scholar

[16] N. Dizadji, S.E. Sajadian, Modeling and optimization of the chamber of OWC system. Energy 36 (2011), 2360-2366.

DOI: 10.1016/j.energy.2011.01.010

Google Scholar

[17] Y. Zhang, Q.P. Zou, D. Greaves, Air-water two-phase flow modelling of hydrodynamic performance of an oscillating water column device. Renewable Energy, v.41 (2012) pp.159-170.

DOI: 10.1016/j.renene.2011.10.011

Google Scholar

[18] U. Senturk, A. Ozdamar, A., Wave energy extraction by na oscillating water column with a gap on the fully submerged front wall. Applied Ocean Research. V. 37 (2012) pp.174-182.

DOI: 10.1016/j.apor.2012.05.004

Google Scholar

[19] B. Bouali, S. Larbi, Contribution to geometry optimization of an oscillating water column wave energy converter. Energy Procedi., V. 36 (2013) pp.565-573.

DOI: 10.1016/j.egypro.2013.07.065

Google Scholar

[20] G. Lorenzini, M.F.E. Lara, L.A.O. Rocha, M.N. Gomes, E.D. Santos, L.A. Isoldi, Constructal design applied to the study of the geometry and submergence of an oscillating water column. International Journal of Heat and Technology, v.33 n.2 (2015) pp.31-38.

DOI: 10.18280/ijht.330205

Google Scholar

[21] M.N. Gomes, G. Lorenzini, L.A.O. Rocha, E.D. Santos, L.A. Isoldi, Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods. Journal of Engineering Thermophysics, v.27 n.2 (2018) pp.1-18.

DOI: 10.1134/s1810232818020042

Google Scholar

[22] M.N. Gomes, M.J. Deus, E.D. Santos, L.A. Isoldi, L.A.O. Rocha, Analysis of the Geometric Constraints Employed in Constructal Design for Oscillating Water Column Devices Submitted to the Wave Spectrum Through a Numerical Approach. Defect and Diffusion Forum, v.390 (2019) pp.193-210.

DOI: 10.4028/www.scientific.net/ddf.390.193

Google Scholar

[23] A. Bejan, Shape and Structure: From Engineering to Nature. Cambridge University Press, New York, (2000).

Google Scholar

[24] A. Bejan, S. Lorente, Design with Constructal Theory, John Wiley & Sons, New Jersey, (2008).

Google Scholar

[25] A. Bejan, Design in Nature, Doulbeday, New York, (2012).

Google Scholar

[26] A. Bejan, S. Lorente, Constructal Law of Design and Evolution: Physics, Biology, Technology, and Society, J. Appl. Phys. 113 (2013) 151301-1 – 151301-20.

DOI: 10.1063/1.4798429

Google Scholar

[27] A. Bejan, The physics of life: the evolution of everything, St. Martins Press, New York, USA, (2016).

Google Scholar

[28] Ansys,2016. Theory Guide FLUENT 2016,.

Google Scholar

[29] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, The Finite Volume Method, Longman, England, (1995).

Google Scholar

[30] X. Lv, Q. Zou, D. Reeve, Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method, Adv. Water Resour. 34 (2011) 1320-1334.

DOI: 10.1016/j.advwatres.2011.06.009

Google Scholar

[31] Schlichting, H., Boundary-layer theory, McGraw-Hill, New York, USA, (1979).

Google Scholar

[32] S.K. Chakrabarti, Handbook of Offshore Engineering. Elsevier, Amsterdam, London, (2005).

Google Scholar

[33] M. Folley, T. Whittaker, Validating a spectral-domain model of an OWC using physical model data, International Journal of Marine Energy, V. 2 (2013), p.1–11.

DOI: 10.1016/j.ijome.2013.05.003

Google Scholar

[34] R.G. Dean, R.A. Dalrymple, Water Wave Mechanics for Engineers and Scientists, World Scientific, Singapore, (1991).

Google Scholar

[35] E. Kreyszig, H. Kreyszig, E. J. Norminton, Advanced Engineering Mathematics, John Wiley & Sons, USA, 10a ed., (2011).

Google Scholar

[36] R. dos S. Ramalhais, Estudo numérico de um dispositivo de conversão da energia das ondas do tipo coluna de água oscilante (CAO), MSc. Thesis in Mechanical Engineering, University Nova de Lisboa, Lisboa, (2011).

DOI: 10.26678/abcm.creem2020.cre2020-0095

Google Scholar