Preparation and Photocatalytic Performance of Flower-Shaped Zno/GO/Fe3O4 on Degradation of Rhodamine B

Article Preview

Abstract:

In this work, a flower-shaped ZnO/GO/Fe3O4 ternary nanocomposite was synthesized via the co-precipitation method. Two significant goals of the study were boosting the degradation efficiency of ZnO and achieving a fast and simple synthesis approach. The structure, properties, and morphology of the product were characterized, and the effect of the ZnO flower-shaped structure in combination with GO nanosheets and magnetite nanoparticles was investigated on the photocatalytic activity. The structure and quality of the prepared nanocomposite were assessed by X-ray diffraction pattern, UV-visible DRS spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM). The catalytic activity of the nanocomposite was assessed by spectrophotometric analysis. The developed nanocomposite offered high photodegradation efficiency in Rhodamine B degradation under UV-C light in comparison with pure ZnO. At a specific period, the efficiency of the synthesized sample was about two times greater than that of pristine ZnO particles. Our nanocomposite is anticipated to have practical benefits in wastewater treatment given its good performance, economic savings through reducing the amount of catalyst consumption and saving time, and being a facile and fast synthesis method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-172

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. W. Hartley, Public perception and participation in water reuse,, Desalination, vol. 187, no. 1–3, p.115–126, (2006).

DOI: 10.1016/j.desal.2005.04.072

Google Scholar

[2] M. Neaz et al., Stabilization of zero valent iron (Fe0) on plasma / dendrimer functionalized polyester fabrics for Fenton-like removal of hazardous water pollutants,, Chem. Eng. J., vol. 374, no. May, p.658–673, (2019).

DOI: 10.1016/j.cej.2019.05.162

Google Scholar

[3] M. H. Plumlee, J. Larabee, and M. Reinhard, Perfluorochemicals in water reuse,, Chemosphere, vol. 72, no. 10, p.1541–1547, (2008).

DOI: 10.1016/j.chemosphere.2008.04.057

Google Scholar

[4] P. Biphenyls, L. Ritter, K. R. Solomon, J. Forget, M. Stemeroff, and T. C. Group, Persistent organic pollutants., Canadian Network of Toxicology Centres, (1995).

Google Scholar

[5] N. Yahya et al., A review of integrated photocatalyst adsorbents for wastewater treatment,, J. Environ. Chem. Eng., (2018).

Google Scholar

[6] N. Miranda-García, M. I. Maldonado, J. M. Coronado, and S. Malato, Degradation study of 15 emerging contaminants at low concentration by immobilized TiO2in a pilot plant,, Catal. Today, vol. 151, no. 1–2, p.107–113, (2010).

DOI: 10.1016/j.cattod.2010.02.044

Google Scholar

[7] N. Yahya et al., PT SC,, Biochem. Pharmacol, (2018).

Google Scholar

[8] Ü. D. Özgür, V. Avrutin, and H. Morkoç, Zinc oxide materials and devices grown by MBE. (2013).

DOI: 10.1016/b978-0-12-387839-7.00016-6

Google Scholar

[9] C. B. Ong, L. Y. Ng, and A. W. Mohammad, A review of ZnO nanoparticles as solar photocatalyst: Synthesis, mechanisms and applications,, Renew. Sustain. Energy Rev., vol. 81, no. July 2016, p.536–551, (2018).

DOI: 10.1016/j.rser.2017.08.020

Google Scholar

[10] H. Nur, I. I. Misnon, and L. K. Wei, Stannic oxide-titanium dioxide coupled semiconductor photocatalyst loaded with polyaniline for enhanced photocatalytic oxidation of 1-octene,, Int. J. Photo energy, vol. 2007, (2007).

DOI: 10.1155/2007/98548

Google Scholar

[11] S. Yun, J. Lee, J. Chung, and S. Lim, Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping,, J. Phys. Chem. Solids, vol. 71, no. 12, p.1724–1731, (2010).

DOI: 10.1016/j.jpcs.2010.08.020

Google Scholar

[12] D. Zhu, T. Hu, Y. Zhao, W. Zang, L. Xing, and X. Xue, High-performance self-powered/active humidity sensing of Fe-doped ZnO Nano array Nano generator,, Sensors Actuators, B Chem., vol. 213, p.382–389, (2015).

DOI: 10.1016/j.snb.2015.02.119

Google Scholar

[13] R. Wang, J. H. Xin, Y. Yang, H. Liu, L. Xu, and J. Hu, The characteristics and photocatalytic activities of silver doped ZnO Nano crystallites,, Appl. Surf. Sci., vol. 227, no. 1–4, p.312–317, (2004).

DOI: 10.1016/j.apsusc.2003.12.012

Google Scholar

[14] W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide,, J. Am. Chem. Soc., vol. 80, no. 6, p.1339, (1958).

DOI: 10.1021/ja01539a017

Google Scholar

[15] R. Sedghi and F. Heidari, A novel & effective visible light-driven TiO2/magnetic porous graphene oxide nanocomposite for the degradation of dye pollutants,, RSC Adv., vol. 6, no. 55, p.49459–49468, (2016).

DOI: 10.1039/c6ra02827f

Google Scholar

[16] J. Tauc, Optical properties and electronic structure of amorphous Ge and Si,, Mater. Res. Bull., vol. 3, no. 1, p.37–46, Jan. (1968).

Google Scholar

[17] M. Zarrabi, M. Haghighi, and R. Alizadeh, Sonoprecipitation dispersion of ZnO nanoparticles over graphene oxide used in photocatalytic degradation of methylene blue in aqueous solution: Influence of irradiation time and power,, Ultrason. Sonochem, vol. 48, p.370–382, (2018).

DOI: 10.1016/j.ultsonch.2018.05.034

Google Scholar

[18] R. Sturgeon, Spectrochemical analysis,, Spectrochimica. Acta Part A: Mol. Spectroscopy, vol. 44, no. 11, p.1229–1230, Jan. (1988).

DOI: 10.1016/0584-8539(88)80100-4

Google Scholar

[19] Q. Feng et al., Synthesis and characterization of Fe3O4 / ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation,, J. Alloys Compound., vol. 737, p.197–206, (2018).

DOI: 10.1016/j.jallcom.2017.12.070

Google Scholar

[20] D. Z. John Becker, Krishna Reddy Raghupati, Tuning of the Crystallite and Particle Sizes of ZnO Nanocrystalline Materials in Solvothermal Synthesis and Their Photocatalytic Activity for Dye Degradation., The Journal of Physical Chemistry, p.13844–13850, (2011).

DOI: 10.1021/jp2038653

Google Scholar

[21] S. B. Zhang, S. H. Wei, and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 63, no. 7, p.1–7, (2001).

DOI: 10.1103/physrevb.63.075205

Google Scholar

[22] T. Szabó, O. Berkesi, and I. Dékány, DRIFT study of deuterium-exchanged graphite oxide,, Carbon N. Y., vol. 43, no. 15, p.3186–3189, (2005).

DOI: 10.1016/j.carbon.2005.07.013

Google Scholar

[23] H. A. Hamad, M. M. Abd El-latif, A. B. Kashyout, W. A. Sadik, and M. Y. Feteha, Study on synthesis of superparamagnetic spinel cobalt ferrite nanoparticles as layered double hydroxides by co-precipitation method,, Russ. J. Gen. Chem., vol. 84, no. 10, p.2031–2036, (2014).

DOI: 10.1134/s1070363214100296

Google Scholar

[24] Y. Zhang, N. Zhang, Z. Tang, and Y. Xu, Graphene Transforms Wide Band Gap ZnS to a Visible Light Photocatalyst. The New Role of Graphene as a Macromolecular Photosensitizer,,ACS Nano, no. 11, p.9777–9789, (2012).

DOI: 10.1021/nn304154s

Google Scholar

[25] X. L. Zhijian Hu, Yang Mi, Yinglu Ji, Rui Wang, Weiya Zhou, Xiaohui Qiu, Multiplasmon modes for enhancing photocatalytic activity of Au/Ag/Cu2O core-shell Nano rods, Nanoscale, vol. 11, p.16445–16454, (2019).

DOI: 10.1039/c9nr03943k

Google Scholar

[26] A. Prasannan and T. Imae, One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels,, Ind. Eng. Chem. Res., vol. 52, p.15673–15678, (2013).

DOI: 10.1021/ie402421s

Google Scholar

[27] H. Dong, J. Deng, Y. Xie, C. Zhang, Z. Jiang, Y. Cheng, K. Hou, G. Zeng, Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr (VI) removal from aqueous solution, Journal of Hazardous Materials, (2017).

DOI: 10.1016/j.jhazmat.2017.03.002

Google Scholar

[28] K. R. Reddy, V. G. Gomes, and M. Hassan, Carbon functionalized TiO2 nano fibers for high efficiency Photocatalysis,, Mater. Res. Express, vol. 15012, (2014).

Google Scholar

[29] S. Ghanbarnezhad, S. Baghshahi, A. Nemati, and M. Mahmoodi, Materials Science in Semiconductor Processing Preparation , magnetic properties , and photocatalytic performance under natural daylight irradiation of Fe3O4 -ZnO core / shell nanoparticles designed on reduced GO platelet,, Mater. Sci. Semicond. Process. vol. 72, no. September, p.85–92, (2017).

DOI: 10.1016/j.mssp.2017.09.015

Google Scholar

[30] W. J. Liu, F. X. Zeng, H. Jiang, X. S. Zhang, and W. W. Li, Composite Fe2O3 and ZrO2/Al2O3 photocatalyst: Preparation, characterization, and studies on the photocatalytic activity and chemical stability,, Chem. Eng. J., vol. 180, p.9–18, (2012).

DOI: 10.1016/j.cej.2011.10.085

Google Scholar

[31] S. Ivanov and V. I. T. Fe-containing, Multiferric Complex Metal Oxides : Main Features of Preparation, Structure, and, vol. 2. Elsevier Inc., (2012).

Google Scholar

[32] S. Thangavel, and N. Raghavan, Visible-light driven photocatalytic degradation of methylene-violet by rGO / Fe 3 O 4 / ZnO ternary Nano hybrid structures,, J. Alloys Compd., vol. 665, p.107–112, (2016).

DOI: 10.1016/j.jallcom.2015.12.192

Google Scholar

[33] L. Tian, Y. Hu, Y. Guo, and Q. Pan, Dual effect of lignin amine on fabrication of magnetic Fe3O4 / C / ZnO nanocomposite in situ and photocatalytic property,, Ceram. Int., vol. 44, no. 12, p.14480–14486, (2018).

DOI: 10.1016/j.ceramint.2018.05.062

Google Scholar

[34] Z. Li, H. Wang, L. Zi, J. Zhang, and Y. Zhang, Preparation and photocatalytic performance of magnetic TiO2 – Fe3O4 / graphene (RGO) composites under VIS-light irradiation,, Ceram. Int., vol. 41, no. 9, p.10634–10643, (2015).

DOI: 10.1016/j.ceramint.2015.04.163

Google Scholar