[1]
T. Ohno, R. Watanabe, T. Nonomura, Development of a die material for isothermal forging of superalloys in air, Transactions of the Iron and Steel Institute of Japan. 27(1) (1987) 34-41.
DOI: 10.2355/isijinternational1966.27.34
Google Scholar
[2]
C.R. Boër, H. Rydstad, G. Schröder, Choosing optimal forging conditions in isothermal and hot-die forging, J. Applied Metalworking. 3 (1985) 421-431.
DOI: 10.1007/bf02833664
Google Scholar
[3]
B.A. Behrens, M. Kazhai, T. Prüß, Potentials of ceramic die materials for isothermal forging purposes of a titanium alloy, Key Engineering Materials. 611-612 (2014) 202-211.
DOI: 10.4028/www.scientific.net/kem.611-612.202
Google Scholar
[4]
R.E. Montero, L.G. Housefield, R.S. Mace, Isothermal and hot-die forging, in: S.L. Semiatin (Eds.), Metalworking: Bulk Forming, Volume 14A., ASM International, 2005, pp.183-192.
DOI: 10.31399/asm.hb.v14a.a0003985
Google Scholar
[5]
B. Buchmayr, Damage, lifetime, and repair of forging dies, Berg Huettenmaenn Monatsh. 162 (2017) 88-93.
DOI: 10.1007/s00501-016-0566-3
Google Scholar
[6]
V. Kukhar, E. Balalayeva, S. Hurkovska, Y. Sahirov, O. Markov, A. Prysiazhnyi, The Selection of options for closed-die forging of complex parts using computer simulation by the criteria of material savings and minimum forging force, Advances in Intelligent Systems and Computing. 989 (2020) 325-331.
DOI: 10.1007/978-981-13-8618-3_35
Google Scholar
[7]
A. Nowotnik, Nickel-based superalloys, in: Reference Module in Materials Science and Materials Engineering, MATS, 2016, 02574.
DOI: 10.1016/b978-0-12-803581-8.02574-1
Google Scholar
[8]
D.V.V. Satyanarayana, N. Eswara Prasad, Nickel-based superalloys, in: N. Prasad, R. Wanhill (Eds.), Aerospace Materials and Material Technologies, Indian Institute of Metals Series, Springer, Singapore, 2017, pp.199-228.
DOI: 10.1007/978-981-10-2134-3_9
Google Scholar
[9]
P. Jozwik, W. Polkowski, Z. Bojar, Applications of Ni3Al based intermetallic alloys - current stage and potential perceptivities, Materials. 8(5) (2015) 2537-2568.
DOI: 10.3390/ma8052537
Google Scholar
[10]
K.B. Povarova, O.A. Skachkov, Preparation, structure, and properties of Ni3Al and NiAl light powder alloys for aerospace, Materials Science Forum. 534-536 (2007) 1585-1588.
DOI: 10.4028/www.scientific.net/msf.534-536.1585
Google Scholar
[11]
T. Czeppe, S. Wierzbinski, Structure and mechanical properties of NiAl and Ni3Al-based alloys, International Journal of Mechanical Sciences. 42(8) (2000) 1499-1518.
DOI: 10.1016/s0020-7403(99)00087-9
Google Scholar
[12]
V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplyanchenko, N.S. Yevtushenko, V.O. Herasymenko, The analysis of a structural state of surface layer after electroerosive alloying, II. Features of formation of electroerosive coatings on special steels and alloys by hard wear-resistant and soft antifriction materials, Metallofiz. Noveishie Tekhnol. 40(6) (2018) 795-815.
DOI: 10.15407/mfint.40.06.0795
Google Scholar
[13]
V.G. Efremenko, O. Hesse, Th. Freidrich, M. Kunert, M. Brykov, K. Shimizu, V. Zurnadzhy, P. Suchmann, Two-body abrasion resistance of high-carbon high-silicon steel: Metastable austenite vs nanostructured bainite, Wear. 418-419 (2019) 24-35.
DOI: 10.1016/j.wear.2018.11.003
Google Scholar
[14]
L.S. Malinov, I.E. Malysheva, E.S. Klimov, V.V. Kukhar, E.Yu. Balalayeva, Effect of particular combinations of quenching, tempering and carburization on abrasive wear of low-carbon manganese steels with metastable austenite, Materials Science Forum. 945 (2019) 574-578.
DOI: 10.4028/www.scientific.net/msf.945.574
Google Scholar
[15]
A.S. Anishchenko, Heat treatment effect on properties of deformed alloy type 36N, Metallovedenie i Termicheskaya Obrabotka Metallov. 4 (1996) 31-32.
Google Scholar
[16]
V. Dragobetskii, V. Zagirnyak, S. Shlyk, A. Shapoval, O. Naumova, Application of explosion treatment methods for production items of powder materials, Przeglad Elektrotechniczny. 95(5) (2019) 39-42.
DOI: 10.15199/48.2019.05.10
Google Scholar
[17]
A.S. Anishchenko, N.Yu. Sosnovskij, Rolling machines for washing machines bodies working, Kuznechno-Shtampovochnoe Proizvodstvo. 11 (1993) 27-28.
Google Scholar
[18]
R. Puzyr, V. Kukhar, A. Maslov, Y. Shchipkovskyi, The development of the method for the calculation of the shaping force in the production of vehicle wheel rims, International Journal of Engineering & Technology (UAE). 7(4.3) (2018) 30-34.
DOI: 10.14419/ijet.v7i4.3.20128
Google Scholar
[19]
D. Yarymbash, M. Kotsur, Y. Bezverkhnia, S. Yarymbash, I. Kotsur, Parameters determination of the trolley busbars by electromagnetic field simulation, in: Proc. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS 2018), 2018, 2018, 76-79.
DOI: 10.1109/ieps.2018.8559576
Google Scholar
[20]
S.O. Korol, M. Moroz, S.S. Korol, V. Yelistratov, O. Moroz, Development of a moderator of the pump controlled drive for the engine, in: IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 2019, pp.30-33.
DOI: 10.1109/mees.2019.8896485
Google Scholar
[21]
V.I. Kaplanov, A.G. Prisyazhnyi, Simulation of contact friction in the hot rolling of steel sheet, Steel in Translation. 38(9) (2008) 714-718.
DOI: 10.3103/s0967091208090040
Google Scholar
[22]
A.S. Anishchenko, A.P. Andryushchenko, Rotary flaring of faceted flairs on pipe blanks, Soviet Engineering Research. 11(5) (1991) 95-97.
Google Scholar
[23]
V.V. Kukhar, A.V. Grushko, I.V. Vishtak, Shape indexes for dieless forming of elongated forgings with sharpened end by tensile drawing with rupture, Solid State Phenomena. 284 (2018) 408-415.
DOI: 10.4028/www.scientific.net/ssp.284.408
Google Scholar
[24]
O. Markov, O. Gerasimenko, L. Aliieva, A. Shapoval, M. Kosilov, Development of a new process for expanding stepped tapered rings, Eastern-European Journal of Enterprise Technologies. 2(1-98) (2019) 39-46.
DOI: 10.15587/1729-4061.2019.160395
Google Scholar
[25]
N. Hrudkina, L. Aliieva, P. Abhari, O. Markov, L. Sukhovirska, Investigating the process of shrinkage depression formation at the combined radial-backward extrusion of parts with a flange, Eastern-European Journal of Enterprise Technologies. 5(1-101) (2019) 49-57.
DOI: 10.15587/1729-4061.2019.179232
Google Scholar
[26]
N.S. Hrudkina, L.I. Aliieva, Modeling of cold extrusion processes using kinematic trapezoidal modules, FME Transactions. 48(2) (2020) 357-363.
DOI: 10.5937/fme2002357h
Google Scholar
[27]
A.S. Anishchenko, Y.V. Feofanov, A.B. Bogun, Hot expansion of precise ring forgings, Khimicheskoe I Neftegazovoe Mashinostroenie. 11 (1992) 33-35.
Google Scholar
[28]
V. Kukhar, O. Kurpe, E. Klimov, E. Balalayeva, V. Dragobetskii, Improvement of the method for calculation the metal temperature loss on a coilbox unit at the rolling on hot strip mills, International Journal of Engineering & Technology (UAE). 7(4.3) (2018) 35-39.
DOI: 10.14419/ijet.v7i4.3.19548
Google Scholar
[29]
O. Trotsko, S. Shlyk, Development of the mathematical model for sheet blanks forming calculation using simulation in ANSYS software, in: Proc. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2018), 1, 2018, pp.169-172.
DOI: 10.1109/stc-csit.2018.8526614
Google Scholar
[30]
I.K. Oginskiy, New approaches to the definition of power parameters of rolling based on finite volume method, Metallurgical and Mining Industry. 7 (2011) 20-26.
Google Scholar
[31]
T. Chereches, P. Lixandru, S. Mazuru, P. Cosovschi, D. Dragnea, Numerical simulation of plastic deformation processes from cast iron parts, Academic Journal of Manufacturing Engineering. 12(2) (2014) 29-36.
DOI: 10.4028/www.scientific.net/amm.657.126
Google Scholar
[32]
І.P. Shats'kyi, Limiting equilibrium of a plate with partially healed crack, Materials Science. 51(3) (2015) 322-330.
DOI: 10.1007/s11003-015-9845-5
Google Scholar
[33]
E.-L. Odenberger, M. Oldenburg, P. Thilderkvist, T. Stoehr, J. Lechler, M. Merklein, Tool development based on modelling and simulation of hot sheet metal forming of Ti–6Al–4V titanium alloy, Journal of Materials Processing Technology. 211(8) (2011) 1324-1335.
DOI: 10.1016/j.jmatprotec.2011.03.001
Google Scholar
[34]
Z. Li, H. Qu, F. Chen, Y. Wang, Z. Tan, M. Kopec, K. Wang, K. Zheng, Deformation behavior and microstructural evolution during hot stamping of TA15 sheets: Experimentation and modelling, Materials. 12(2) (2019) 223.
DOI: 10.3390/ma12020223
Google Scholar
[35]
O. Lypchanskyi, T. Sleboda, K. Zyguła, A. Łukaszek-Sołek, M. Wojtaszek, Evaluation of hot workability of nickel-based superalloy using activation energy map and processing maps, Materials. 13(16) (2020) 3629.
DOI: 10.3390/ma13163629
Google Scholar