Nickel-Based Slag-Remelted Superalloy for Ti-Alloys Isothermal Forging Die-Tool

Article Preview

Abstract:

The work purpose is to evaluate the application of nickel-based CrNi73CuBeTeAl superalloy (tungsten-free), made by electroslag remelting as a die tool material for isothermal forming. Isothermal deformation was simulated by tests for high-temperature cyclic creep. The specimens with high and × in plan dimensions (both parallel and perpendicular to the ingots central axis) were cut from the bottom, top and central zone, near the lateral surface and in the ingots central axis area. The tests were performed at 900, 940 and 980 °C constant temperature with 100, 200 and 300 MPa cyclic pressure in 0.02, 0.2 and 2.0 mm/s velocities range corresponded to 10-3-10-1 1/s strain rates. Such tools application field is compressor blades Ti-forgings die forging and sizing with ε = 1.0-3.0% residual upsetting deformation of dies during operation. It is shown that the die life can be extended to 400-700 loading cycles at 850-950 °C operating temperature and pressure up to 150 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-135

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ohno, R. Watanabe, T. Nonomura, Development of a die material for isothermal forging of superalloys in air, Transactions of the Iron and Steel Institute of Japan. 27(1) (1987) 34-41.

DOI: 10.2355/isijinternational1966.27.34

Google Scholar

[2] C.R. Boër, H. Rydstad, G. Schröder, Choosing optimal forging conditions in isothermal and hot-die forging, J. Applied Metalworking. 3 (1985) 421-431.

DOI: 10.1007/bf02833664

Google Scholar

[3] B.A. Behrens, M. Kazhai, T. Prüß, Potentials of ceramic die materials for isothermal forging purposes of a titanium alloy, Key Engineering Materials. 611-612 (2014) 202-211.

DOI: 10.4028/www.scientific.net/kem.611-612.202

Google Scholar

[4] R.E. Montero, L.G. Housefield, R.S. Mace, Isothermal and hot-die forging, in: S.L. Semiatin (Eds.), Metalworking: Bulk Forming, Volume 14A., ASM International, 2005, pp.183-192.

DOI: 10.31399/asm.hb.v14a.a0003985

Google Scholar

[5] B. Buchmayr, Damage, lifetime, and repair of forging dies, Berg Huettenmaenn Monatsh. 162 (2017) 88-93.

DOI: 10.1007/s00501-016-0566-3

Google Scholar

[6] V. Kukhar, E. Balalayeva, S. Hurkovska, Y. Sahirov, O. Markov, A. Prysiazhnyi, The Selection of options for closed-die forging of complex parts using computer simulation by the criteria of material savings and minimum forging force, Advances in Intelligent Systems and Computing. 989 (2020) 325-331.

DOI: 10.1007/978-981-13-8618-3_35

Google Scholar

[7] A. Nowotnik, Nickel-based superalloys, in: Reference Module in Materials Science and Materials Engineering, MATS, 2016, 02574.

DOI: 10.1016/b978-0-12-803581-8.02574-1

Google Scholar

[8] D.V.V. Satyanarayana, N. Eswara Prasad, Nickel-based superalloys, in: N. Prasad, R. Wanhill (Eds.), Aerospace Materials and Material Technologies, Indian Institute of Metals Series, Springer, Singapore, 2017, pp.199-228.

DOI: 10.1007/978-981-10-2134-3_9

Google Scholar

[9] P. Jozwik, W. Polkowski, Z. Bojar, Applications of Ni3Al based intermetallic alloys - current stage and potential perceptivities, Materials. 8(5) (2015) 2537-2568.

DOI: 10.3390/ma8052537

Google Scholar

[10] K.B. Povarova, O.A. Skachkov, Preparation, structure, and properties of Ni3Al and NiAl light powder alloys for aerospace, Materials Science Forum. 534-536 (2007) 1585-1588.

DOI: 10.4028/www.scientific.net/msf.534-536.1585

Google Scholar

[11] T. Czeppe, S. Wierzbinski, Structure and mechanical properties of NiAl and Ni3Al-based alloys, International Journal of Mechanical Sciences. 42(8) (2000) 1499-1518.

DOI: 10.1016/s0020-7403(99)00087-9

Google Scholar

[12] V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplyanchenko, N.S. Yevtushenko, V.O. Herasymenko, The analysis of a structural state of surface layer after electroerosive alloying, II. Features of formation of electroerosive coatings on special steels and alloys by hard wear-resistant and soft antifriction materials, Metallofiz. Noveishie Tekhnol. 40(6) (2018) 795-815.

DOI: 10.15407/mfint.40.06.0795

Google Scholar

[13] V.G. Efremenko, O. Hesse, Th. Freidrich, M. Kunert, M. Brykov, K. Shimizu, V. Zurnadzhy, P. Suchmann, Two-body abrasion resistance of high-carbon high-silicon steel: Metastable austenite vs nanostructured bainite, Wear. 418-419 (2019) 24-35.

DOI: 10.1016/j.wear.2018.11.003

Google Scholar

[14] L.S. Malinov, I.E. Malysheva, E.S. Klimov, V.V. Kukhar, E.Yu. Balalayeva, Effect of particular combinations of quenching, tempering and carburization on abrasive wear of low-carbon manganese steels with metastable austenite, Materials Science Forum. 945 (2019) 574-578.

DOI: 10.4028/www.scientific.net/msf.945.574

Google Scholar

[15] A.S. Anishchenko, Heat treatment effect on properties of deformed alloy type 36N, Metallovedenie i Termicheskaya Obrabotka Metallov. 4 (1996) 31-32.

Google Scholar

[16] V. Dragobetskii, V. Zagirnyak, S. Shlyk, A. Shapoval, O. Naumova, Application of explosion treatment methods for production items of powder materials, Przeglad Elektrotechniczny. 95(5) (2019) 39-42.

DOI: 10.15199/48.2019.05.10

Google Scholar

[17] A.S. Anishchenko, N.Yu. Sosnovskij, Rolling machines for washing machines bodies working, Kuznechno-Shtampovochnoe Proizvodstvo. 11 (1993) 27-28.

Google Scholar

[18] R. Puzyr, V. Kukhar, A. Maslov, Y. Shchipkovskyi, The development of the method for the calculation of the shaping force in the production of vehicle wheel rims, International Journal of Engineering & Technology (UAE). 7(4.3) (2018) 30-34.

DOI: 10.14419/ijet.v7i4.3.20128

Google Scholar

[19] D. Yarymbash, M. Kotsur, Y. Bezverkhnia, S. Yarymbash, I. Kotsur, Parameters determination of the trolley busbars by electromagnetic field simulation, in: Proc. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS 2018), 2018, 2018, 76-79.

DOI: 10.1109/ieps.2018.8559576

Google Scholar

[20] S.O. Korol, M. Moroz, S.S. Korol, V. Yelistratov, O. Moroz, Development of a moderator of the pump controlled drive for the engine, in: IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 2019, pp.30-33.

DOI: 10.1109/mees.2019.8896485

Google Scholar

[21] V.I. Kaplanov, A.G. Prisyazhnyi, Simulation of contact friction in the hot rolling of steel sheet, Steel in Translation. 38(9) (2008) 714-718.

DOI: 10.3103/s0967091208090040

Google Scholar

[22] A.S. Anishchenko, A.P. Andryushchenko, Rotary flaring of faceted flairs on pipe blanks, Soviet Engineering Research. 11(5) (1991) 95-97.

Google Scholar

[23] V.V. Kukhar, A.V. Grushko, I.V. Vishtak, Shape indexes for dieless forming of elongated forgings with sharpened end by tensile drawing with rupture, Solid State Phenomena. 284 (2018) 408-415.

DOI: 10.4028/www.scientific.net/ssp.284.408

Google Scholar

[24] O. Markov, O. Gerasimenko, L. Aliieva, A. Shapoval, M. Kosilov, Development of a new process for expanding stepped tapered rings, Eastern-European Journal of Enterprise Technologies. 2(1-98) (2019) 39-46.

DOI: 10.15587/1729-4061.2019.160395

Google Scholar

[25] N. Hrudkina, L. Aliieva, P. Abhari, O. Markov, L. Sukhovirska, Investigating the process of shrinkage depression formation at the combined radial-backward extrusion of parts with a flange, Eastern-European Journal of Enterprise Technologies. 5(1-101) (2019) 49-57.

DOI: 10.15587/1729-4061.2019.179232

Google Scholar

[26] N.S. Hrudkina, L.I. Aliieva, Modeling of cold extrusion processes using kinematic trapezoidal modules, FME Transactions. 48(2) (2020) 357-363.

DOI: 10.5937/fme2002357h

Google Scholar

[27] A.S. Anishchenko, Y.V. Feofanov, A.B. Bogun, Hot expansion of precise ring forgings, Khimicheskoe I Neftegazovoe Mashinostroenie. 11 (1992) 33-35.

Google Scholar

[28] V. Kukhar, O. Kurpe, E. Klimov, E. Balalayeva, V. Dragobetskii, Improvement of the method for calculation the metal temperature loss on a coilbox unit at the rolling on hot strip mills, International Journal of Engineering & Technology (UAE). 7(4.3) (2018) 35-39.

DOI: 10.14419/ijet.v7i4.3.19548

Google Scholar

[29] O. Trotsko, S. Shlyk, Development of the mathematical model for sheet blanks forming calculation using simulation in ANSYS software, in: Proc. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2018), 1, 2018, pp.169-172.

DOI: 10.1109/stc-csit.2018.8526614

Google Scholar

[30] I.K. Oginskiy, New approaches to the definition of power parameters of rolling based on finite volume method, Metallurgical and Mining Industry. 7 (2011) 20-26.

Google Scholar

[31] T. Chereches, P. Lixandru, S. Mazuru, P. Cosovschi, D. Dragnea, Numerical simulation of plastic deformation processes from cast iron parts, Academic Journal of Manufacturing Engineering. 12(2) (2014) 29-36.

DOI: 10.4028/www.scientific.net/amm.657.126

Google Scholar

[32] І.P. Shats'kyi, Limiting equilibrium of a plate with partially healed crack, Materials Science. 51(3) (2015) 322-330.

DOI: 10.1007/s11003-015-9845-5

Google Scholar

[33] E.-L. Odenberger, M. Oldenburg, P. Thilderkvist, T. Stoehr, J. Lechler, M. Merklein, Tool development based on modelling and simulation of hot sheet metal forming of Ti–6Al–4V titanium alloy, Journal of Materials Processing Technology. 211(8) (2011) 1324-1335.

DOI: 10.1016/j.jmatprotec.2011.03.001

Google Scholar

[34] Z. Li, H. Qu, F. Chen, Y. Wang, Z. Tan, M. Kopec, K. Wang, K. Zheng, Deformation behavior and microstructural evolution during hot stamping of TA15 sheets: Experimentation and modelling, Materials. 12(2) (2019) 223.

DOI: 10.3390/ma12020223

Google Scholar

[35] O. Lypchanskyi, T. Sleboda, K. Zyguła, A. Łukaszek-Sołek, M. Wojtaszek, Evaluation of hot workability of nickel-based superalloy using activation energy map and processing maps, Materials. 13(16) (2020) 3629.

DOI: 10.3390/ma13163629

Google Scholar