Relationship between Kinematic Viscosity and Cluster Size in Multicomponent Metal Melts

Article Preview

Abstract:

We analyzed the temperature dependences of the kinematic viscosity and density of Fe73.5Cu1M3Si13.5B9 melts, where M = Nb, Mo, V, and Cr, in the temperature range from 1450 to 1950 K using the transition state theory. It is shown that the activation energy of viscous flow is proportional to the particle size on a natural logarithmic scale. The lowest viscosity and the highest free volume has the Nb melt. In melts with Mo, V, and Cr, the structural units of viscous flow upon heating and cooling are clusters about 0.6 nm in size. In a melt with Nb, at the initial stage of heating, the vibrations of individual atoms prevail, the movement of which creates viscosity. After heating the Nb melt above the critical temperature of 1770 K, the viscous flow is associated with clusters about 1 nm in size. At the cooling stage, the cluster structure of the Nb melt is retained up to a temperature of 1450 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-107

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Calvo-Dahlborg, P.S. Popel, M.J. Kramer, M. Besser, J.R. Morris, U. Dahlborg, Superheat-dependent microstructure of molten Al-Si alloys of different compositions studied by small angle neutron scattering, J. Alloys Comp. 550 (2013) 9-22.

DOI: 10.1016/j.jallcom.2012.09.086

Google Scholar

[2] Ye.A. Kochetkova, Yu.N. Starodubtsev, V.S. Tsepelev, Kinematic viscosity of melt prepared from an amorphous Fe72.5Cu1Nb2Mo1.5Si14B9 ribbon, IOP Conf. Ser.: Mater. Sci. Eng. 969 (2020), 012027.

DOI: 10.1088/1757-899x/969/1/012027

Google Scholar

[3] B.A. Baum, Metal Liquids, Nauka, Moscow, (1979).

Google Scholar

[4] H.D. Koca, S. Doganay, A. Turgut, I.H. Tavman, R. Saidur, I.M. Mahbubul, Effect of particles size on viscosity of nanofluids: a review, Renew. Sust. Energy Rev. 82 (2018) 1664-1674.

DOI: 10.1016/j.rser.2017.07.016

Google Scholar

[5] S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Processes. The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, McGraw-Hill Book Co., New York, London, (1941).

Google Scholar

[6] G. de With, Liquid-State Physical Chemistry. Fundamentals, Modeling, and Applications, Wiley-VCH, Weinheim, (2013).

Google Scholar

[7] V.S. Tsepelev, Yu.N. Starodubtsev, K.M. Wu, Ye.A. Kochetkova, Nanoparticles size in Fe73.5Cu1Mo3Si13.5B9 melt, Key Eng. Mater. 861 (2020) 107-112.

Google Scholar

[8] J. Frenkel, Kinetic Theory of Liquids, Dover Publications, New York, (1946).

Google Scholar

[9] V. Tsepelev, Yu. Starodubtsev, V. Konashkov, K. Wu, R. Wang, Melt viscosity of nanocrystalline alloys in the model of free volume, J. Alloys Comp. 790 (2019) 547-550.

DOI: 10.1016/j.jallcom.2019.03.106

Google Scholar

[10] V.S. Tsepelev, Yu.N. Starodubtsev, V.Ya. Belozerov, The effect of inhibitors on the structure and magnetic properties of nanocrystalline soft magnetic alloys, Phys. Met. Metallogr. 119 (2018) 831-836.

DOI: 10.1134/s0031918x18090120

Google Scholar

[11] V.S. Tsepelev, Yu.N. Starodubtsev, Nanocrystalline soft magnetic iron-based materials from liquid state to ready product, Nanomaterials. 11 (2021) 00108.

DOI: 10.3390/nano11010108

Google Scholar

[12] V. Tsepelev, V. Konashkov, Y. Starodubtsev, V. Belozerov, D. Gaipisherov, Optimum regime of heat treatment of soft magnetic amorphous materials, IEEE Trans. Magn. 48 (2012) 1327-1330.

DOI: 10.1109/tmag.2011.2175209

Google Scholar

[13] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Butterworth–Heinemann, Oxford, (1998).

Google Scholar

[14] N. Oono, H. Nitta, Y. Iijima, Diffusion of niobium in α-iron, Mater. Trans. 44 (2003) 2978-2083.

DOI: 10.2320/matertrans.44.2078

Google Scholar

[15] G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, D. Terentyev, On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy, J. Phys.: Condens. Matter. 25 (2013) 315401.

DOI: 10.1088/0953-8984/25/31/315401

Google Scholar