[1]
I.A. Budanov, The development of metallurgy depends on the transition of the Russian economy to the model of investment growth, Journal Steel. 6 (2016) 82-89.
Google Scholar
[2]
Forecast of Socioeconomic Development of the Russian Federation for 2019 and the Forecast Period of 2010-2015, Minekonomrazvitiya Rossii, (2019).
Google Scholar
[3]
A.E. Shastitko, A.I. Meleshkina, K.V. Dozmarov, Error risks under antitrust law enforcement: effects of demand and supply shocks, Upravlenets – The Manager. 10(3) (2019) 2-13.
DOI: 10.29141/2218-5003-2019-10-3-1
Google Scholar
[4]
R.J. Ong, J.T. Dawley, Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by geobacter lovleyi, Journal of Materials Research. 264 (2003) 1678-1685.
DOI: 10.3410/f.1121746.578815
Google Scholar
[5]
L. Yu, J. Duan, W. Zhao, Y. Huang, B. Hou, Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode, Electrochimica Acta. 56(25) (2011) 9041-9047.
DOI: 10.1016/j.electacta.2011.05.086
Google Scholar
[6]
J. Contreras-Serna, C. I. Rivera-Solorio, M. A. Herrera-García. Study of heat transfer in a tubular-panel cooling system in the wall of an electric arc furnace, Applied Thermal Engineering. 148 (2019) 43-56.
DOI: 10.1016/j.applthermaleng.2018.10.134
Google Scholar
[7]
J. Jiang, F. Beck, H. Krohn, Electrochemical reversibility of graphite oxide, J. Indian Chem. Soc. 66(4) (1989) 603-609.
Google Scholar
[8]
H. Krohn, F. Beck, H. Junge, Reversible electrochemical graphite salt formation from aqueous salt electrolytes, Ber. Bunsenges. Phys. Chem. 86(8) (1982) 704-710.
DOI: 10.1002/bbpc.19820860806
Google Scholar
[9]
T. Nakajiama, A. Mabuchi, R. Hagiwara, A new structure model of graphite oxide, Carbon. 26(3) (1988) 357-361.
DOI: 10.1016/0008-6223(88)90227-8
Google Scholar
[10]
Y. Matsuo, K. Tahara, Y. Seigie, Structure and thermal properties of poly(ethylene oxide) -intercalated graphite oxide, Carbon. 35(1) (1977) 113-120.
DOI: 10.1016/s0008-6223(96)00123-6
Google Scholar
[11]
S. Aronson, C. Frishberg, G. Frankl, Thermodynamic properties of the graphite-bisulfate lamellar compounds, Carbon. 9(6) (1971) 715-723.
DOI: 10.1016/0008-6223(71)90004-2
Google Scholar
[12]
I.V. Nikolskaya et al., On the formation of graphite bisulfate in systems containing graphite, H2SO4 and an oxidizer, Journal of General Chemistry. 59(12) (1989) 2653-2659.
Google Scholar
[13]
A.I. Finaenov, A.I. Trifonov, A.V. Yakovlev, Areas of application and production of thermally expanded graphite, Vestnik SSTU. 1(2) (2004) 75-85.
Google Scholar
[14]
R.E. Stevens, S. Ross, S.P. Wesson, Exfoliated graphite from the intercalate with ferric chloride, Carbon. 11 (1973) 525-630.
DOI: 10.1016/0008-6223(73)90312-6
Google Scholar
[15]
I.G. Chernysh, I.D. Buraya, Investigation of the process of graphite oxidation by a solution of potassium bichromate in sulfuric acid, Chemistry of Solid Fuel. 1 (1990) 123-127.
Google Scholar