[1]
W. D. Menzie, J.J. Barry, D.I. Bleiwas, E.L. Bray, T.G. Goonan, G. Matos, The global flow of aluminum from 2006 through 2025, US Department of the Interior, US Geological Survey, (2010).
DOI: 10.3133/ofr20101256
Google Scholar
[2]
B.J. Welch, Aluminum production paths in the new millennium, JoM. 51(5) (1999) 24-28.
DOI: 10.1007/s11837-999-0036-4
Google Scholar
[3]
V.A. Kukartsev, V.S. Tynchenko, V.V. Kukartsev, E.A. Chzhan, N.A. Shepeta, Steel smelting in induction crucible furnaces with industrial frequency, IOP Conference Series: Earth and Environmental Science. 194(4) (2018) 042024.
DOI: 10.1088/1755-1315/194/4/042024
Google Scholar
[4]
Y. Zhang, M. Sun, J. Hong, X. Han, J. He, W. Shi, X. Li, Environmental footprint of aluminum production in China, Journal of Cleaner Production. 133 (2016) 1242-1251.
DOI: 10.1016/j.jclepro.2016.04.137
Google Scholar
[5]
U. Aybarc, H. Yavuz, D. Dispinar, M.O. Seydibeyoglu, The use of stirring methods for the production of SiC-reinforced aluminum matrix composite and validation via simulation studies, International Journal of Metalcasting. 13(1) (2019) 190-200.
DOI: 10.1007/s40962-018-0250-3
Google Scholar
[6]
A.B.S. ElDeeb, V.N. Brichkin, Egyptian aluminum containing ores and prospects for their use in the production of Aluminum, Int. J. Sci. Eng. Res. 9(5) (2018) 721-731.
Google Scholar
[7]
V.I. Napalkov, G.V. Cherepok, S.V. Makhov, Yu.M. Chornovol, Continuous Casting of Aluminum Alloys, Intermet Engineering, Moscow, (2005).
Google Scholar
[8]
B. Stojanovic, M. Bukvic, I. Epler, Application of aluminum and aluminum alloys in engineering, Applied Engineering Letters. 3(2) (2018) 52-62.
DOI: 10.18485/aeletters.2018.3.2.2
Google Scholar
[9]
S. Caba, Aluminum alloy for additive manufacturing in automotive production, ATZ Worldwide. 122(11) (2020) 58-61.
DOI: 10.1007/s38311-020-0285-y
Google Scholar
[10]
M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, J. Banhart, The role of strontium in modifying aluminium–silicon alloys, Acta Materialia. 60(9) (2012) 3920-3928.
DOI: 10.1016/j.actamat.2012.03.031
Google Scholar
[11]
P. Litwa, E. Hernandez-Nava, D. Guan, R. Goodall, K.K. Wika, The additive manufacture processing and machinability of CrMnFeCoNi high entropy alloy, Materials & Design. 198 (2021) 109380.
DOI: 10.1016/j.matdes.2020.109380
Google Scholar
[12]
V.A. Kukartsev, V.V. Kukartsev, V.S. Tynchenko, An experience of a liquid glass mixture using for AlpHaset process in Russia, Materials Science Forum. 946 (2019) 690-695.
DOI: 10.4028/www.scientific.net/msf.946.690
Google Scholar
[13]
G.S. Ershov, V.A. Cherpakov, Structure and Properties of Liquid and Solid Metals, Metallurgy, Moscow, (1978).
Google Scholar
[14]
V.A. Semenikhin, A.V. Petridis, I. Yu. Kupri-Yanova, Possibility of using a complex long-acting modifier based on nanopowders to improve the quality of castings from aluminum alloys, New Materials and Technologies in Mechanical Engineering. 4 (2005) 110-113.
Google Scholar
[15]
M. Danish, T.L. Ginta, K. Habib, D. Carou, A.M.A. Rani, B.B. Saha, Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions, The International Journal of Advanced Manufacturing Technology. 91(5) (2017) 2855-2868.
DOI: 10.1007/s00170-016-9893-5
Google Scholar
[16]
B. Meyghani, M.B. Awang, S.S. Emamian, M.K.B. Mohd Nor, S.R. Pedapati, A comparison of different finite element methods in the thermal analysis of friction stir welding (FSW), Metals. 7(10) (2017) 450.
DOI: 10.3390/met7100450
Google Scholar
[17]
I.V. Rafalsky, G.V. Dovnar, S.V. Kiselev, Thermal analysis of model silumins with various eutectic modifiers, Foundry. 3 (2006) 118-124.
Google Scholar
[18]
K. Swaminathan, D.M. Sangeetha, Thermal analysis of FGM plates–A critical review of various modeling techniques and solution methods, Composite Structures. 160 (2017) 43-60.
DOI: 10.1016/j.compstruct.2016.10.047
Google Scholar
[19]
S.V. Nine, ProCAST - virtual modeling of foundry technologies. For those who are used to being ahead, CADmaster. 5 (2006) 36-44.
Google Scholar
[20]
V.A. Kukartsev, I.A. Kaposhko, A.V. Kukartsev, Features of using programs for modeling casting processes, Foundry of Russia. 9 (2019) 6-10.
Google Scholar
[21]
I.A. Petrov, A.D. Shlyaptseva, A.P. Ryakhovsky, V.S. Moiseev, Improvement of the technology of modification of sil-mins, News of Materials Science. Science and Technology. 6 (2013) 1-8.
Google Scholar
[22]
J.L. Jorstad, D. Apelian, Hypereutectic Al-Si alloys: Practical processing techniques, Die Casting Engineer. 48(3) (2004) 50-58.
Google Scholar
[23]
G.S. Makarov, Ingots from Aluminum Alloys with Magnesium and Silicon for Pressing, Intermet Engineering, Moscow, (2011).
Google Scholar