The Degassing Laws for Railway Wheel Steel in a Vacuum Tank Degasser

Article Preview

Abstract:

The research presents the results of data analysis on degassing of wheel grades of steels in a tank degasser with a capacity of 120 tons, operated at the JSC “Ural Steel”. The volume of the analyzed sample included 754 steels for railway wheels (steel grades “2” and “T” according to State standard GOST 10791-2011) weighing more than 80 thousand tons received in November-December 2019.It was established that in order to guarantee the production of hydrogen content of less than 1.5 ppm and nitrogen before 0.007%, it is necessary to carry out vacuum treatment of metal with overheating of 110-130°C at the residual pressure of up to 3 mbar for 20-25 minutes and argon flow rate of at least 0.05 m3/ton. The regression equation was obtained, which allows to predict the results of degassing, as well as select the values of vacuum treatment parameters in order to achieve a given content of dissolved gases - hydrogen and nitrogen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-274

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] GOST 10791-2011 All-rolled Wheels. Specifications.

Google Scholar

[2] V.A. Kudrin, The Theory and Technology of Steel Production Technology: Textbook for Universities, World, LLC AST Publishing House,, Moscow, (2003).

Google Scholar

[3] D.Ja. Povolockij, V.A. Kudrin, A.F. Vishkarev, Secondary Steelmaking, MISIS, Moscow.

Google Scholar

[4] A.N. Morozov, M.M. Strekalovskij, G.I. Chernov, Ya.E. Katznelson, Liquid Steel Degassing Metallurgija, Moscow, (1975).

Google Scholar

[5] K. Helmut, Desoxydation und Vakuumbehandlung von Stahlschmelzen. Bd. 2. Grundlagen und Verfahren der Pfannenmetallurgie, Verlag Stahleisen, Düsseldorf, (1983).

Google Scholar

[6] M.Ya. Brovman, Continuous Casting of Metals, Ecomet, Moscow, (2007).

Google Scholar

[7] V.M. Parshin, L.V. Bulanov, Continuous Casting of Steel, OJSC NLMK,, Lipetsk, (2011).

Google Scholar

[8] H. Pan, Control technology of internal quality for CC billet, Advanced Materials Research. 415-417 (2012) 1729-1734.

DOI: 10.4028/www.scientific.net/amr.415-417.1729

Google Scholar

[9] E.A. Shevchenko, A.M. Stolyarov, A.N. Shapovalov, K.V. Baranchikov, Transverse distortion of continuous-cast slab, Steel in Translation. 44 (2014) 17-20.

DOI: 10.3103/s0967091214010161

Google Scholar

[10] S. Yu, J. Miettinen, L. Shao, S. Louhenkilpi, Mathematical modeling of nitrogen removal from the vacuum tank degasser, Steel Research Int. 86(5) (2015) 466-477.

DOI: 10.1002/srin.201400093

Google Scholar

[11] R.J. Fruehan, Fundamentals and practice for producing low nitrogen steels, ISIJ International. 36 Supplement (1996) S58-S61.

DOI: 10.2355/isijinternational.36.suppl_s58

Google Scholar

[12] A. Jauhiainen, L. Jonsson, P. Jönsson and S. Eriksson, The influence of stirring method on hydrogen removal during ladle treatment, Steel Research. 73(3) (2002) 82-90.

DOI: 10.1002/srin.200200178

Google Scholar

[13] S.D. Zinchenko, M.V. Filatov, S.V. Efimov, A.V. Dub, S.V. Goshkadera, Technological aspects of hydrogen removal with using of ladle plant for steel vacuum processing, Metallurg. 11 (2004) 41-42.

DOI: 10.1007/s11015-005-0026-x

Google Scholar

[14] Ju.I. Nebosov, S.V. Suharev, S.V. Kazakov, Kinetics of hydrogen removal in the gas phase in ladle vacuum treatment, News of Higher Educational Institutions. Ferrous Metallurgy. 7 (2007) 16-18.

Google Scholar

[15] S. Yu, J. Miettinen, S. Louhenkilpi, Numerical study on the removal of hydrogen and nitrogen from the melt of medium carbon steel in vacuum tank degasser, Materials Science Forum. 762 (2013) 253-260.

DOI: 10.4028/www.scientific.net/msf.762.253

Google Scholar

[16] S. Yu, J. Miettinen, S. Louhenkilpi, Modeling study of nitrogen removal from the vacuum tank degasser, Steel Research Int. 85(9) (2014) 1393-1402.

DOI: 10.1002/srin.201300262

Google Scholar

[17] E. Ardelean, T. Hepuț, M. Vătășescu, E. Crișan, Researches regarding the influence of vacuum parameters on the efficiency of gas removal from the liquid steel, Solid State Phenomena. 254 (2016) 218-223.

DOI: 10.4028/www.scientific.net/ssp.254.218

Google Scholar

[18] V.D. Tutarova, A.N. Shapovalov, A.N. Kalitaev, Removal of hydrogen in the vacuum treatment of steel, Steel in Translation. 47(3) (2017) 153-158.

DOI: 10.3103/s0967091217030159

Google Scholar

[19] F. Karouni, B.P. Wynne, J. Talamantes-Silva and S. Phillips, Modeling the effect of plug positions and ladle aspect ratio on hydrogen removal in the vacuum arc degasser, Steel Research Int. 89(5) (2018) 1700551.

DOI: 10.1002/srin.201700551

Google Scholar

[20] V.D. Tutarova, A.N. Shapovalov, A.N. Kalitaev, Objective laws of nitrogen removal in the vacuum tank degasser, Materials Science Forum. 989 (2020) 381-387.

DOI: 10.4028/www.scientific.net/msf.989.381

Google Scholar

[21] Process Instruction PI 13657842. 03-2014. Steel Degassing, JSC Ural Steel,, Novotroitsk, (2014).

Google Scholar

[22] V. Burgman, Zh. Davene, The structure of the steel vacuum costs with processing in the ladle furnace, Ferrous Metals. 11 (2012) 41-49.

Google Scholar