[1]
Information on http://www.worldstainless.org/Files/issf/non-image-files/PDF/ISSF_Stainless_Steel_in_Figures_2019_English_public_version.pdf (ISSF Stainless Steel in Figures 2019).
Google Scholar
[2]
F. Crane, J. Charles, J. Furness, Selection and Use of Engineering Materials, third ed., Butterworth-Heinemann, London, (1997).
Google Scholar
[3]
C. Trépanier, M. Tabrizian, L. Yahia, L. Bilodeau, D.L. Piron, Effect of modification of oxide layer on NiTi stent corrosion resistance. J. Biomed. Mater. Res. 43 (1998) 433-440.
DOI: 10.1002/(sici)1097-4636(199824)43:4<433::aid-jbm11>3.0.co;2-#
Google Scholar
[4]
O.K. Tokovoj, Argon-Oxygen Decarburization of Stainless Steel: Monograph, Izdatel'skij centr YUUrGU, Chelyabinsk, (2015).
Google Scholar
[5]
S.K. Mehlman, Pneumatic Steelmaking Volume Two: The AOD Process, Iron and Steel Society, Warrendale, PA, (1991).
Google Scholar
[6]
A.A. Zhuhovickij, L.A. Shvarcman, Physical Chemistry, Metallurgiya, Moscow, (1976).
Google Scholar
[7]
V.I. Yavojskij, A.V. Yavojskij, Scientific Foundations of Modern Steel Production Processes, Metallurgiya, Moscow, (1987).
Google Scholar
[8]
S.I. Popel', A.I. Sotnikov, V.N. Boronenkov, Theory of Metallurgical Processes, Metallurgiya, Moscow, (1986).
Google Scholar
[9]
I.A. Magidson, A.S. Morozov, M.F. Sidorenko et al., Viscosity of chromium slags, Izvestiya. Ferrous Metallurgy. 11 (1973) 61-64.
Google Scholar
[10]
Z. Kalicka, E. Kawecka-Cebula, K. Pytel, Application of the Iida model for estimation of slag viscosity for Al2O3-Cr2O3-CaO-CaF2 systems, Arch. Metall. Mater. 54 (2009) 179-187.
Google Scholar
[11]
D.A. Dyudkin, V.V. Kisilenko, Secondary Metallurgy, Teplotekhnik, Moscow, (2010).
Google Scholar
[12]
A.A. Akberdin, I.S. Kulikov, V.A. Kim et al., Physical Properties of Melts of the CaO-Al2O3-SiO2-MgO-CaF2 System, Metallurgiya, Moscow, (1987).
Google Scholar
[13]
D.Ya. Povolockij, V.E. Roshchin, V.P. Gribanov et al., Effect of SiO2 on the volatility of slags of the Al2O3-Al2O3-CaF2 system, Izvestiya. Ferrous Metallurgy. 8 (1982) 39-42.
Google Scholar
[14]
A.I. Zajcev, B.M. Mogutnov, E.H. Shahpazov, Physical Chemistry of Metallurgical Slags, Interkontakt Nauka, Moscow, (2008).
Google Scholar
[15]
W. Hongming, Z. Tingwang, Z. Hua, Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux, ISIJ Int. 51 (2011) 702-706.
DOI: 10.2355/isijinternational.51.702
Google Scholar
[16]
A.A. Akberdin, G.M. Kireeva, I.A. Medvekovskaya, Vliyanie B2O3 na vyazkost' shlakov sistemy CaO-Al2O3-SiO2 (in Russian) Effect of B2O3 on the viscosity of slags of the CaO-Al2O3-SiO2 system, Izvestiya AN SSSR. Metally. 3 (1986) 55-56.
DOI: 10.24892/rijie/20180405
Google Scholar
[17]
A.A. Babenko, S.A. Istomin, E.V. Protopopov, A.V. Sychev, V.V. Ryabov, Viscosity of CaO – SiO2 – Al2O3 – MgO – B2O3 slag system, Izvestiya. Ferrous Metallurgy. 57 (2014) 41-43.
DOI: 10.17073/0368-0797-2014-2-41-43
Google Scholar
[18]
W. Hong-Ming, L. Gui-Rong, L. Bo, Z. Xue-Jun, Y. Yong-qi, Effect of B2O3 on melting temperature of CaO-based ladle refining slag, ISIJ Int. 17 (2010) 18-22.
Google Scholar
[19]
A.A. Akberdin, G.M. Kireeva, I.A. Medvedovskaya et al., Atlas of Viscosity Diagrams of Boron-Containing Slags, № 3971–B, Dep. v VINITI, (1986).
Google Scholar
[20]
W. Wang, D. Cai, L. Zhang, A Review of fluorine-free mold flux development, ISIJ Int. 58 (2018) 1957-1964.
DOI: 10.2355/isijinternational.isijint-2018-232
Google Scholar
[21]
Ya.E. Gol'dshtejn, V.G. Mizin, Modification and Microalloying of Pig Iron and Steel, Metallurgiya, Moscow, (1986).
Google Scholar
[22]
V.A. Golubcov, V.V. Lunev, Steel Modification for Castings and Ingots, ZNGU, Chelyabinsk-Zaporozh'e, (2009).
Google Scholar
[23]
V.L. Pilyushenko, V.A. Vihlevshchuk, Scientific and Technological Basis for Steel Microalloying, Metallurgiya, Moscow, (2000).
Google Scholar
[24]
M. Kulka, D. Mikołajczak, N. Makuch, P. Dziarski, D. Przestacki, D. Panfil-Pryka, A. Piasecki, A. Miklaszewski, Laser surface alloying of austenitic 316L steel with boron and some metallic elements: Microstructure, Materials. 13 (2020) 4852.
DOI: 10.3390/ma13214852
Google Scholar
[25]
J. Bai, Y. Cui, J. Wang, N. Dong, M. Saqlain Qurashi, H. Wei, Y. Yang, P. Han, Effect of boron addition on the precipitation behavior of S31254, Metals. 8 (2018) 497.
DOI: 10.3390/met8070497
Google Scholar
[26]
D.A. Mortimer, Segregation of boron to grain boundaries in iron and a stainless steel, J. Phys. Colloques. 36 (1975) C4-137-C4-140.
DOI: 10.1051/jphyscol:1975414
Google Scholar
[27]
M. Cetin, E. Ölmez, Corrosion, wear and mechanical properties of boron added cast 304 stainless steel, Prot Met Phys Chem Surf. 56 (2020) 619-627.
DOI: 10.1134/s2070205120030089
Google Scholar
[28]
A.A. Babenko, L.A. Smirnov, V.I. Zhuchkov, A.V. Sychev, A.G. Upolovnikova, Using of simplex lattices method for diagramming composition-viscosity of the slag system CaO-SiO2-Al2O3-MgO-B2O3, Butlerov Communications. 48 (2016) 40-44.
DOI: 10.1134/s0036029517050020
Google Scholar
[29]
A.A. Babenko, V.I. Zhuchkov, A.G. Upolovnikova, A.A. Konyshev, L.I. Leont'ev, Equilibrium boron distribution between Fe–C–Si–Al melt and boron-bearing slag, Steel Transl. 47 (2017) 599-604.
DOI: 10.3103/s0967091217090029
Google Scholar
[30]
Information on http://www.chemistry-software.com/pdf/HSC/full%20manual%20HSC%20Chemistry%205.pdf.
Google Scholar