Effect of Basicity and Boron Oxide in Slags of the AOD Process on the Equilibrium Interphase Distribution of Sulfur and Boron

Article Preview

Abstract:

The use of fluorspar in modern metallurgical slags, incl. slags of the argon-oxygen decarburization (AOD) process, as a fluxing agent, is associated with many disadvantages. Those disadvantages can be solved by using boron oxide as an alternative, which also provides conditions for direct microalloying of steel with boron. The paper presents the results of thermodynamic modeling of the effect of basicity and boron oxide content in slags of the CaO–SiO2–B2O3–Cr2O3–Al2O3–MgO system on the equilibrium interphase distribution of sulfur and boron, and their equilibrium content in the metal. Modeling was carried out using the HSC 8.03 Chemistry software package (Outokumpu). Slag from the desulfurization period of the AOD-process was used as the oxide phase. As a result, it was shown that, in the range of basicities 2.0-2.5 and a content of 2-4% B2O3, it is possible to carry out desulfurization of the metal, providing a sulfur content of 0.001-0.007%, and simultaneous microalloying of steel with boron in an amount of up to 0.0103%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

293-298

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http://www.worldstainless.org/Files/issf/non-image-files/PDF/ISSF_Stainless_Steel_in_Figures_2019_English_public_version.pdf (ISSF Stainless Steel in Figures 2019).

Google Scholar

[2] F. Crane, J. Charles, J. Furness, Selection and Use of Engineering Materials, third ed., Butterworth-Heinemann, London, (1997).

Google Scholar

[3] C. Trépanier, M. Tabrizian, L. Yahia, L. Bilodeau, D.L. Piron, Effect of modification of oxide layer on NiTi stent corrosion resistance. J. Biomed. Mater. Res. 43 (1998) 433-440.

DOI: 10.1002/(sici)1097-4636(199824)43:4<433::aid-jbm11>3.0.co;2-#

Google Scholar

[4] O.K. Tokovoj, Argon-Oxygen Decarburization of Stainless Steel: Monograph, Izdatel'skij centr YUUrGU, Chelyabinsk, (2015).

Google Scholar

[5] S.K. Mehlman, Pneumatic Steelmaking Volume Two: The AOD Process, Iron and Steel Society, Warrendale, PA, (1991).

Google Scholar

[6] A.A. Zhuhovickij, L.A. Shvarcman, Physical Chemistry, Metallurgiya, Moscow, (1976).

Google Scholar

[7] V.I. Yavojskij, A.V. Yavojskij, Scientific Foundations of Modern Steel Production Processes, Metallurgiya, Moscow, (1987).

Google Scholar

[8] S.I. Popel', A.I. Sotnikov, V.N. Boronenkov, Theory of Metallurgical Processes, Metallurgiya, Moscow, (1986).

Google Scholar

[9] I.A. Magidson, A.S. Morozov, M.F. Sidorenko et al., Viscosity of chromium slags, Izvestiya. Ferrous Metallurgy. 11 (1973) 61-64.

Google Scholar

[10] Z. Kalicka, E. Kawecka-Cebula, K. Pytel, Application of the Iida model for estimation of slag viscosity for Al2O3-Cr2O3-CaO-CaF2 systems, Arch. Metall. Mater. 54 (2009) 179-187.

Google Scholar

[11] D.A. Dyudkin, V.V. Kisilenko, Secondary Metallurgy, Teplotekhnik, Moscow, (2010).

Google Scholar

[12] A.A. Akberdin, I.S. Kulikov, V.A. Kim et al., Physical Properties of Melts of the CaO-Al2O3-SiO2-MgO-CaF2 System, Metallurgiya, Moscow, (1987).

Google Scholar

[13] D.Ya. Povolockij, V.E. Roshchin, V.P. Gribanov et al., Effect of SiO2 on the volatility of slags of the Al2O3-Al2O3-CaF2 system, Izvestiya. Ferrous Metallurgy. 8 (1982) 39-42.

Google Scholar

[14] A.I. Zajcev, B.M. Mogutnov, E.H. Shahpazov, Physical Chemistry of Metallurgical Slags, Interkontakt Nauka, Moscow, (2008).

Google Scholar

[15] W. Hongming, Z. Tingwang, Z. Hua, Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux, ISIJ Int. 51 (2011) 702-706.

DOI: 10.2355/isijinternational.51.702

Google Scholar

[16] A.A. Akberdin, G.M. Kireeva, I.A. Medvekovskaya, Vliyanie B2O3 na vyazkost' shlakov sistemy CaO-Al2O3-SiO2 (in Russian) Effect of B2O3 on the viscosity of slags of the CaO-Al2O3-SiO2 system, Izvestiya AN SSSR. Metally. 3 (1986) 55-56.

DOI: 10.24892/rijie/20180405

Google Scholar

[17] A.A. Babenko, S.A. Istomin, E.V. Protopopov, A.V. Sychev, V.V. Ryabov, Viscosity of CaO – SiO2 – Al2O3 – MgO – B2O3 slag system, Izvestiya. Ferrous Metallurgy. 57 (2014) 41-43.

DOI: 10.17073/0368-0797-2014-2-41-43

Google Scholar

[18] W. Hong-Ming, L. Gui-Rong, L. Bo, Z. Xue-Jun, Y. Yong-qi, Effect of B2O3 on melting temperature of CaO-based ladle refining slag, ISIJ Int. 17 (2010) 18-22.

Google Scholar

[19] A.A. Akberdin, G.M. Kireeva, I.A. Medvedovskaya et al., Atlas of Viscosity Diagrams of Boron-Containing Slags, № 3971–B, Dep. v VINITI, (1986).

Google Scholar

[20] W. Wang, D. Cai, L. Zhang, A Review of fluorine-free mold flux development, ISIJ Int. 58 (2018) 1957-1964.

DOI: 10.2355/isijinternational.isijint-2018-232

Google Scholar

[21] Ya.E. Gol'dshtejn, V.G. Mizin, Modification and Microalloying of Pig Iron and Steel, Metallurgiya, Moscow, (1986).

Google Scholar

[22] V.A. Golubcov, V.V. Lunev, Steel Modification for Castings and Ingots, ZNGU, Chelyabinsk-Zaporozh'e, (2009).

Google Scholar

[23] V.L. Pilyushenko, V.A. Vihlevshchuk, Scientific and Technological Basis for Steel Microalloying, Metallurgiya, Moscow, (2000).

Google Scholar

[24] M. Kulka, D. Mikołajczak, N. Makuch, P. Dziarski, D. Przestacki, D. Panfil-Pryka, A. Piasecki, A. Miklaszewski, Laser surface alloying of austenitic 316L steel with boron and some metallic elements: Microstructure, Materials. 13 (2020) 4852.

DOI: 10.3390/ma13214852

Google Scholar

[25] J. Bai, Y. Cui, J. Wang, N. Dong, M. Saqlain Qurashi, H. Wei, Y. Yang, P. Han, Effect of boron addition on the precipitation behavior of S31254, Metals. 8 (2018) 497.

DOI: 10.3390/met8070497

Google Scholar

[26] D.A. Mortimer, Segregation of boron to grain boundaries in iron and a stainless steel, J. Phys. Colloques. 36 (1975) C4-137-C4-140.

DOI: 10.1051/jphyscol:1975414

Google Scholar

[27] M. Cetin, E. Ölmez, Corrosion, wear and mechanical properties of boron added cast 304 stainless steel, Prot Met Phys Chem Surf. 56 (2020) 619-627.

DOI: 10.1134/s2070205120030089

Google Scholar

[28] A.A. Babenko, L.A. Smirnov, V.I. Zhuchkov, A.V. Sychev, A.G. Upolovnikova, Using of simplex lattices method for diagramming composition-viscosity of the slag system CaO-SiO2-Al2O3-MgO-B2O3, Butlerov Communications. 48 (2016) 40-44.

DOI: 10.1134/s0036029517050020

Google Scholar

[29] A.A. Babenko, V.I. Zhuchkov, A.G. Upolovnikova, A.A. Konyshev, L.I. Leont'ev, Equilibrium boron distribution between Fe–C–Si–Al melt and boron-bearing slag, Steel Transl. 47 (2017) 599-604.

DOI: 10.3103/s0967091217090029

Google Scholar

[30] Information on http://www.chemistry-software.com/pdf/HSC/full%20manual%20HSC%20Chemistry%205.pdf.

Google Scholar