[1]
G.M. Mudd, Global trends and environmental issues in nickel mining: sulfides versus laterites, Ore Geol. Rev. 38 (2010) 9-26.
DOI: 10.1016/j.oregeorev.2010.05.003
Google Scholar
[2]
M. Elias, Nickel laterite deposits – geological overview, resources and exploitation, in: D.R. Cooke and J. Pongratz (Eds.) Giant Ore Deposits: Characteristics, Genesis and Exploration, CODES Special Publication, Centre for Ore Deposit Research, University of Tasmania, 2002, pp.205-220.
Google Scholar
[3]
Ş. Kaya and Y. Topkaya, High pressure acid leaching of a refractory lateritic nickel ore, Minerals Eng. 24 (2011) 1188-1197.
DOI: 10.1016/j.mineng.2011.05.004
Google Scholar
[4]
B. Ma, C. Wang, W. Yang, B. Yang and Y. Zhang, Selective pressure leaching of Fe (II)-rich limonitic laterite ores from Indonesia using nitric acid, Minerals Eng. 45 5 (2013) 151-158.
DOI: 10.1016/j.mineng.2013.02.009
Google Scholar
[5]
F. Mendes and A. Martins, Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions using column resin sorption, Int. J. Miner. Process. 77 (2005) 53-63.
DOI: 10.1016/j.minpro.2005.02.001
Google Scholar
[6]
B. Whittington and D. Muir, Pressure acid leaching of nickel laterites: a review, Mineral Processing and Extractive Metallurgy Review. 21 (2000) 527-599.
DOI: 10.1080/08827500008914177
Google Scholar
[7]
R. McDonald and B. Whittington, Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies, Hydrometallurgy. 91 (2008) 35-55.
DOI: 10.1016/j.hydromet.2007.11.009
Google Scholar
[8]
A. D. Dalvi, W. G. Bacon and R. Osborne, The past and the future of nickel laterites, in: PDAC 2004 International Convention, Trade show & Investors Exchange, 2004, pp.1-27.
Google Scholar
[9]
J.E. De Graaf, The treatment of lateritic nickel ores – a further study of the Caron process and other possible improvements. Part I. Effect of reduction conditions, Hydrometallurgy. 5(10) (1979) 47-65.
DOI: 10.1016/0304-386x(79)90027-6
Google Scholar
[10]
H. Ciftci, S. Atik, Microbial leaching of metals from a lateritic nickel ore by pure and mixed cultures of mesophilic acidophiles, Metall. Res. Technol. 114(5) (2017) 508.
DOI: 10.1051/metal/2017049
Google Scholar
[11]
D.B. Johnson, B.M. Grail and K.B. Hallberg, A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores, Minerals. 3 (2013) 49-58.
DOI: 10.3390/min3010049
Google Scholar
[12]
E. Keskinkilic, Nickel laterite smelting processes and some examples of recent possible modifications to the conventional route, Metals. 9(9) (2019) 974.
DOI: 10.3390/met9090974
Google Scholar
[13]
I.F. Hudyakov, Metallurgy of Copper, Nickel and Cobalt, Part 1, Metallurgy, Moscow, (1977).
Google Scholar
[14]
B.M. Mikhailov, Hypergene metallogeny of the Urals, Lithology and Mineral Resources. 39(2) (2004) 136-160.
DOI: 10.1023/b:limi.0000018987.14282.50
Google Scholar
[15]
F.D. Mendes and A.H. Martins, Recovery of nickel and cobalt from acid leach pulp by ion exchange using chelating resin, Minerals Eng. 18 (2005) 945-954.
DOI: 10.1016/j.mineng.2004.12.009
Google Scholar
[16]
N. Dizge, B. Keskinler and H. Barlas. Sorption of Ni (II) ions from aqueous solution by Lewatit cation-exchange resin. Journal of Hazardous Materials. 167 (2009) 915-926.
DOI: 10.1016/j.jhazmat.2009.01.073
Google Scholar
[17]
Z. Zainol and M. J. Nicol, Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings, Hydrometallurgy. 96 (2009) 283-287.
DOI: 10.1016/j.hydromet.2008.11.005
Google Scholar
[18]
R.R. Grinstead, Selective absorption of copper, nickel, cobalt and other transition metals ions from sulfuric acid solutions with the chelating ion exchange resin XFS 4195, Hydrometallurgy. 12(3) (1984) 387-400.
DOI: 10.1016/0304-386x(84)90009-4
Google Scholar
[19]
R.A. Silva, Y. Zhang, K. Hawboldt, L.A. James, Study on iron-nickel separation using ion exchange resins with different functional groups for potential iron sub-production, Mineral Processing and Extractive Metallurgy Review. 42(2) (2021) 75-89.
DOI: 10.1080/08827508.2019.1678155
Google Scholar
[20]
G.L. Pashkov, S.V. Saikova, M.V. Panteleeva, D.I. Saikova, Cation resin exchange leaching of oxidized nickel ores of the Ust-Porozhinskoye deposit, Tsvetnye Metally. 8 (2018) 52-56.
DOI: 10.17580/tsm.2018.08.06
Google Scholar
[21]
B. Wassink, M. Neufeld, D. Dreisinger and G. Freeman, Towards a resin-in-pulp process for recovery of nickel and cobalt from laterite leach tailings: an iminodiacetic acid ion exchange resin as a prospective resin, in: Proceedings of International Water Conference, 2006, pp.327-344.
DOI: 10.1016/j.mineng.2013.02.002
Google Scholar
[22]
B. McKevitt, P. Abbasi and D. Dreisinger, A comparison of large bead ion exchange resins for the recovery of base metals in a resin-in-pulp (RIP) circuit, in: Proceedings of the 6th Southern African Base Metals Conference, SAIMM, 2011, pp.337-352.
Google Scholar
[23]
P. Littlejohn, J. Vaughan, Selectivity of commercial and novel mixed functionality cation exchange resins in mildly acidic sulfate and mixed sulfate–chloride solution, Hydrometallurgy. 121 (2012) 90-99.
DOI: 10.1016/j.hydromet.2012.04.001
Google Scholar