[1]
C. Vives, Electromagnetic refining of aluminum alloys by the CREM process: Part I. Working principle and metallurgical results, Metallurgical Transactions B. 20 (1989) 623-629.
DOI: 10.1007/bf02655919
Google Scholar
[2]
L. Zhang, D.G. Robertson, G. Jianwei, L. N. Wiredu, Removal of iron from aluminum: a review, Mineral Processing and Extractive Metallurgy Review. 33(2) (2012) 99-157.
DOI: 10.1080/08827508.2010.542211
Google Scholar
[3]
K. Al-Helal, I. Stone, Z. Y. Fan, Refinement of primary silicon crystals by novel P-Doped γ-Al2O3 particles in solidification of hypereutectic Al-Si alloys, Materials Science Forum. 877 (2016) 550-557.
DOI: 10.4028/www.scientific.net/msf.877.550
Google Scholar
[4]
Information on: https://books.google.ru/books?id=xAykAwAAQBAJ&printsec=frontcover&dq=inauthor:%22NIIR+Board+of+Consultants+and+Engineers%22&hl=ru&sa=X&ved=2ahUKEwiN9Yzkye7uAhVjs4sKHTufCaoQ6AEwAXoECAEQAg#v=onepage&q&f=false.
Google Scholar
[5]
K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, J. Thonstad, Aluminum Electrolysis: Fundamentals of the Hall Heroult Process, second ed., Aluminium GmbH, Dusseldorf, (1982).
Google Scholar
[6]
C.J. Simensen, and G. Berg, A survey of inclusions in aluminum, Aluminium. 56(5) (1980) 335-338.
Google Scholar
[7]
I. Polmear, Light Alloys, fourth ed., Butterworth-Heinemann, (2005).
Google Scholar
[8]
V.V. Artamonov, A.O. Bykov, P.O. Bykov, V.P. Artamonov, Measurement of the tap density of metal powders, Powder Metallurgy and Metal Ceramics. 52(3-4) (2013) 237-239.
DOI: 10.1007/s11106-013-9518-6
Google Scholar
[9]
K. Nakajima, O. Takeda, T. Miki, K. Matsubae, S. Nakamura, T. Nagasaka, Thermodynamic analysis of contamination by alloying elements in aluminum recycling environ, Sci. Technol. 44(14) (2010) 5594-5600.
DOI: 10.1021/es9038769
Google Scholar
[10]
J.A. Taylor, J.F. Grandfield, A. Prasad, The impact of rising Ni and V impurity levels in smelter grade aluminium and potential control strategies, Materials Science Forum. 630 (2009) 129-136.
DOI: 10.4028/www.scientific.net/msf.630.129
Google Scholar
[11]
E.S. Gorlanov, Alloying Cathodes of Aluminum Electrolyzers by the Method of Low-Temperature Synthesis of Titanium Diboride: dissertation for the degree of Doctor of Technical Sciences, St. Petersburg State University, St. Petersburg, (2020).
DOI: 10.17580/nfm.2019.02.06
Google Scholar
[12]
V.I. Shpakov, V.S. Razumkin, V.G. Kokulin, E.V. Nizovtsev, V.G. Ivanov, L.P. Trifonenkov, V.M. Nikitin, RU Patent 2,084,548. (1997).
Google Scholar
[13]
E.S. Gorlanov, A.A. Batrachenko, B.S. Smailov, A.Y. Morozov, Role of vanadium in aluminum electrolyzer melts, Metallurgist. 62(9-10) (2019) 1048-1053.
DOI: 10.1007/s11015-019-00752-8
Google Scholar
[14]
E.S. Gorlanov, A.A. Batrachenko, B.S. Smailov, A.P. Skvortsov, Testing baked anodes with an increased vanadium content, Metallurgist. 62(1-2) (2018) 62-69.
DOI: 10.1007/s11015-018-0626-x
Google Scholar
[15]
A.T. Ibragimov, R.V. Pack, Aluminum Electrometallurgy, Kazakhstan Electrolysis Plant, Dom Pechati, Pavlodar, (2009).
Google Scholar
[16]
H.P. Sun, J. Wu, T. Tang, B. Fan, Z.H. Tang, Effect of vanadium carbide on commercial pure aluminum, International Journal of Minerals Metallurgy and Materials. 24 (2017) 833-841.
DOI: 10.1007/s12613-017-1467-5
Google Scholar
[17]
S. Kumar, A. Jain, Y. Kojima, Thermodynamics and kinetics of hydrogen absorption-desorption of vanadium synthesized by aluminothermy, Journal of Thermal Analysis and Calorimetry. 130 (2017) 721-726.
DOI: 10.1007/s10973-017-6430-1
Google Scholar
[18]
Q. Li, Z.W. Chen, Q. Luo, B.W. Li, Experimental investigation and thermodynamic calculation of the Al-rich corner in the ternary Al-Ti-V system, Materials & Design. 115 (2017) 339-347.
DOI: 10.1016/j.matdes.2016.11.047
Google Scholar
[19]
A. Khaliq, M.A. Rhamdhani, G.A. Brooks, J.F. Grandfield, Removal of vanadium from molten aluminum-part I. Analysis of VB2 formation, Metallurgical and Materials Transactions B. 45 (2014) 752-768.
DOI: 10.1007/s11663-013-9974-x
Google Scholar
[20]
A. Khaliq, M.A. Rhamdhani, G.A. Brooks, J.F. Grandfield, Removal of vanadium from molten aluminum-part II. Kinetic analysis and mechanism of VB2 formation, Metallurgical and Materials Transactions B. 45 (2014) 769-783.
DOI: 10.1007/s11663-013-9975-9
Google Scholar