Refining of Primary Aluminum from Vanadium

Article Preview

Abstract:

The paper investigates the technology of refining primary aluminum from vanadium impurities, based on flux treatment with boron-containing fluxes. In the Pavlodar region of the Republic of Kazakhstan, on the basis of local enterprises, the production of primary aluminum and products based on local raw materials is developing. The main problem in the production of primary aluminum on the basis of JSC “Kazakhstan Electrolysis Plant” is the presence of undesirable vanadium impurities, which pass into metal during electrolysis from baked anodes based on calcined coke (vanadium content up to 800 ppm) of the local enterprise LLP UPNK-PV (Pavlodar, Kazakhstan). The authors investigated the process of ladle refining of aluminum from vanadium using the Al-B (3% B) alloy. Laboratory and industrial tests have shown a decrease in the vanadium content by an average of 78% in the bulk of the metal, with an increase in its content in volume up to 5-10% of the ladle capacity. It was found that mixing leads to a certain averaging of the vanadium content in the ladle volume.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

405-410

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Vives, Electromagnetic refining of aluminum alloys by the CREM process: Part I. Working principle and metallurgical results, Metallurgical Transactions B. 20 (1989) 623-629.

DOI: 10.1007/bf02655919

Google Scholar

[2] L. Zhang, D.G. Robertson, G. Jianwei, L. N. Wiredu, Removal of iron from aluminum: a review, Mineral Processing and Extractive Metallurgy Review. 33(2) (2012) 99-157.

DOI: 10.1080/08827508.2010.542211

Google Scholar

[3] K. Al-Helal, I. Stone, Z. Y. Fan, Refinement of primary silicon crystals by novel P-Doped γ-Al2O3 particles in solidification of hypereutectic Al-Si alloys, Materials Science Forum. 877 (2016) 550-557.

DOI: 10.4028/www.scientific.net/msf.877.550

Google Scholar

[4] Information on: https://books.google.ru/books?id=xAykAwAAQBAJ&printsec=frontcover&dq=inauthor:%22NIIR+Board+of+Consultants+and+Engineers%22&hl=ru&sa=X&ved=2ahUKEwiN9Yzkye7uAhVjs4sKHTufCaoQ6AEwAXoECAEQAg#v=onepage&q&f=false.

Google Scholar

[5] K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, J. Thonstad, Aluminum Electrolysis: Fundamentals of the Hall Heroult Process, second ed., Aluminium GmbH, Dusseldorf, (1982).

Google Scholar

[6] C.J. Simensen, and G. Berg, A survey of inclusions in aluminum, Aluminium. 56(5) (1980) 335-338.

Google Scholar

[7] I. Polmear, Light Alloys, fourth ed., Butterworth-Heinemann, (2005).

Google Scholar

[8] V.V. Artamonov, A.O. Bykov, P.O. Bykov, V.P. Artamonov, Measurement of the tap density of metal powders, Powder Metallurgy and Metal Ceramics. 52(3-4) (2013) 237-239.

DOI: 10.1007/s11106-013-9518-6

Google Scholar

[9] K. Nakajima, O. Takeda, T. Miki, K. Matsubae, S. Nakamura, T. Nagasaka, Thermodynamic analysis of contamination by alloying elements in aluminum recycling environ, Sci. Technol. 44(14) (2010) 5594-5600.

DOI: 10.1021/es9038769

Google Scholar

[10] J.A. Taylor, J.F. Grandfield, A. Prasad, The impact of rising Ni and V impurity levels in smelter grade aluminium and potential control strategies, Materials Science Forum. 630 (2009) 129-136.

DOI: 10.4028/www.scientific.net/msf.630.129

Google Scholar

[11] E.S. Gorlanov, Alloying Cathodes of Aluminum Electrolyzers by the Method of Low-Temperature Synthesis of Titanium Diboride: dissertation for the degree of Doctor of Technical Sciences, St. Petersburg State University, St. Petersburg, (2020).

DOI: 10.17580/nfm.2019.02.06

Google Scholar

[12] V.I. Shpakov, V.S. Razumkin, V.G. Kokulin, E.V. Nizovtsev, V.G. Ivanov, L.P. Trifonenkov, V.M. Nikitin, RU Patent 2,084,548. (1997).

Google Scholar

[13] E.S. Gorlanov, A.A. Batrachenko, B.S. Smailov, A.Y. Morozov, Role of vanadium in aluminum electrolyzer melts, Metallurgist. 62(9-10) (2019) 1048-1053.

DOI: 10.1007/s11015-019-00752-8

Google Scholar

[14] E.S. Gorlanov, A.A. Batrachenko, B.S. Smailov, A.P. Skvortsov, Testing baked anodes with an increased vanadium content, Metallurgist. 62(1-2) (2018) 62-69.

DOI: 10.1007/s11015-018-0626-x

Google Scholar

[15] A.T. Ibragimov, R.V. Pack, Aluminum Electrometallurgy, Kazakhstan Electrolysis Plant, Dom Pechati, Pavlodar, (2009).

Google Scholar

[16] H.P. Sun, J. Wu, T. Tang, B. Fan, Z.H. Tang, Effect of vanadium carbide on commercial pure aluminum, International Journal of Minerals Metallurgy and Materials. 24 (2017) 833-841.

DOI: 10.1007/s12613-017-1467-5

Google Scholar

[17] S. Kumar, A. Jain, Y. Kojima, Thermodynamics and kinetics of hydrogen absorption-desorption of vanadium synthesized by aluminothermy, Journal of Thermal Analysis and Calorimetry. 130 (2017) 721-726.

DOI: 10.1007/s10973-017-6430-1

Google Scholar

[18] Q. Li, Z.W. Chen, Q. Luo, B.W. Li, Experimental investigation and thermodynamic calculation of the Al-rich corner in the ternary Al-Ti-V system, Materials & Design. 115 (2017) 339-347.

DOI: 10.1016/j.matdes.2016.11.047

Google Scholar

[19] A. Khaliq, M.A. Rhamdhani, G.A. Brooks, J.F. Grandfield, Removal of vanadium from molten aluminum-part I. Analysis of VB2 formation, Metallurgical and Materials Transactions B. 45 (2014) 752-768.

DOI: 10.1007/s11663-013-9974-x

Google Scholar

[20] A. Khaliq, M.A. Rhamdhani, G.A. Brooks, J.F. Grandfield, Removal of vanadium from molten aluminum-part II. Kinetic analysis and mechanism of VB2 formation, Metallurgical and Materials Transactions B. 45 (2014) 769-783.

DOI: 10.1007/s11663-013-9975-9

Google Scholar