[1]
R.R. Moskalyk, A.M. Alfantazi, Review of copper pyrometallurgical practice: today and tomorrow, Minerals Engineering. 16 (2003) 893-919.
DOI: 10.1016/j.mineng.2003.08.002
Google Scholar
[2]
K.B. Pedersen, P.E. Jensen, L.M. Ottosen, A. Evenset, G.N. Christensen, M. Frantzen, Metal speciation of historic and new copper mine tailings from Repparfjorden, Northern Norway, before and after acid, base and electrodialytic extraction, Minerals Engineering. 107 (2017) 100-111.
DOI: 10.1016/j.mineng.2016.10.009
Google Scholar
[3]
M. Wang, W. Chen, X. Li, Substance flow analysis of copper in production stage in the U.S. from 1974 to 2012, Resources, Conservation and Recycling. 105 (2015) 36-48.
DOI: 10.1016/j.resconrec.2015.10.012
Google Scholar
[4]
F. Habashi and A.D. Bas, Electrochemistry and mineral dissolution, IMPC 2016: XXVIII International Mineral Processing Congress Proceedings. (2016) 1-10.
Google Scholar
[5]
T. Mizoguchi, F. Habashi, The aqueous oxidation of complex sulfide concentrates in hydrochloric acid, Int. J. of Mineral Processing. 8 (1981) 177-193.
DOI: 10.1016/0301-7516(81)90036-3
Google Scholar
[6]
F. Letowski, B. Kolodziej, M. Czernecki, A. Jedrczak, Z. Adamski, A new hydrometallurgical method for the processing of copper concentrates using ferric sulphate, Hydrometallurgy. 4 (1979) 169-184.
DOI: 10.1016/0304-386x(79)90045-8
Google Scholar
[7]
B. Xu, H. Zhong, T. Jiang, Recovery of valuable metals from Gacun complex copper concentrate by two-stage countercurrent oxygen pressure acid leaching process, Minerals Engineering. 24 (2011) 1082-1083.
DOI: 10.1016/j.mineng.2011.04.022
Google Scholar
[8]
O. Hyvarinen, M. Hamalainen, HydroCopperTM – a new technology producing copper directly from concentrate, Hydrometallurgy. 77 (2005) 61-65.
DOI: 10.1016/j.hydromet.2004.09.011
Google Scholar
[9]
D. Dreisinger, Copper leaching from primary sulfides: options for biological and chemical extraction of copper, Hydrometallurgy. 83 (2006) 10-20.
DOI: 10.1016/j.hydromet.2006.03.032
Google Scholar
[10]
Y. Sheng-hua, W. Ai-xiang, Q. Guan-Zhou, Bioleaching of low-grade copper sulphides, Trans. Nonferrous Met. Soc. China. 18 (2008) 707-713.
DOI: 10.1016/s1003-6326(08)60122-3
Google Scholar
[11]
B. Jin, X. Yang, Q. Shen, Pressure oxidative leaching of lead-containing copper matte, Hydrometallurgy. 96 (2009) 57-61.
DOI: 10.1016/j.hydromet.2008.08.005
Google Scholar
[12]
S.M. Abd El Haleem, E.E. Din Abd El Aal, Electrochemical reduction of the corrosion products formed on copper surface in alkaline-sulphide solutions, J. of Alloys and Compounds. 432 (2007) 205-210.
DOI: 10.1016/j.jallcom.2006.05.099
Google Scholar
[13]
L. Kartal, S. Timur, Electrolytic production of Cu−Ni alloys in CaCl2−Cu2S−NiS molten salt, Trans. Nonferrous Met. Soc. China. 28 (2018) 2143-2150.
DOI: 10.1016/s1003-6326(18)64859-9
Google Scholar
[14]
Z. Lu, J. Tang, M. de Lourdes Mendosa, D. Chang, L. Cai, L. Zhang, Electrochemical decrease of sulfide in sewage by pulsed power supply, J. of Electroanalitical Chemistry. 745 (2015) 37-43.
DOI: 10.1016/j.jelechem.2015.02.014
Google Scholar
[15]
E.N. Selivanov, O.V. Nechvoglod, L.Yu. Udoeva and others, RF patent 2,434,065. (2011).
Google Scholar
[16]
E.N. Selivanov, O.V. Nechvoglod, V.G. Lobanov, The effect of the nickel sulphide alloys structure on their electrochemical oxidation parameters, IFAC Proceedings. (2013) 259-262.
DOI: 10.3182/20130825-4-us-2038.00098
Google Scholar
[17]
O.V. Nechvoglod, E.N. Selivanov, S.V. Mamyachenkov, The electrolysis of granulated copper-nickel matte. Fray International Symposium. Metals and materials Processing in Clean Environment. Aqueous, Low Temperatures and Electrochemical Processing. (2012) 601-620.
Google Scholar
[18]
S.S. Naboichenko, Non-Ferrous Metal Powders, Moscow, (1997).
Google Scholar
[19]
A.V. Vanyukov, V.Ya. Zaitsev, The Theory of Metallurgical Processes, Moscow, (1993).
Google Scholar
[20]
S.E. Vaysburd, Physicochemical Properties and Structural Features of Sulfide Melts, Moscow, (1996).
Google Scholar