[1]
A. Cavaleiro, J.T. de Hosson (Eds.), Nanostructured Coating, Springer-Verlag, Berlin, (2006).
Google Scholar
[2]
J. Musil, P. Baroch, P. Zeman, Hard nanocomposite coatings. Present status and trends, ch.1, in: R. Wei (Eds.), Plasma Surface Engineering and its Practical Applications, Research Signpost Publisher, Kerala, India, (2007).
Google Scholar
[3]
O.V. Kudryakov, V.N. Varavka, Integrated indentation tests of metal-ceramic nanocomposite coatings, Inorganic Materials. 51(15) (2015) 1508-1515.
DOI: 10.1134/s0020168515150108
Google Scholar
[4]
O.V. Kudryakov, V.N. Varavka, V.V. Ilyasov, Characterisation of anti-erosive properties of nanocomposite coatings by the methods of sclerometry, Journal of Physics: Conference Series. 857 (2017) 012025.
DOI: 10.1088/1742-6596/857/1/012025
Google Scholar
[5]
V.N. Varavka, O.V. Kudryakov, I.Yu. Zabiyaka, N.I. Bronnikova, Structural features of nanocomposite ion-plasma deposited coatings containing aluminum, in: I.A. Parinov, S.-H. Chang, Y.-H. Kim (Eds.), Physics, Mechanics of New Materials and Their Applications, ch. 1, Nova Science Publishers, New York, 2019, pp.1-12.
Google Scholar
[6]
J.J. Olaya, S.E. Rodil, S. Muhl, E. Sancher, Tribological enhancement of CrN coatings by niobium and carbon ion implantation, Surf. and Coat. Tech. 188-189 (2004) 478-483.
Google Scholar
[7]
J.J. Zhang, M.X. Wang, J. Yang, Q.X. Liu, D.J. Li, Enhancing mechanical and tribological performance of multilayered CrN/ZrN coatings, Surf. and Coat. Tech. 201 (2007) 5186-5189.
DOI: 10.1016/j.surfcoat.2006.07.093
Google Scholar
[8]
I.-W. Park, D.S. Kang, J.J. Moore, S.C. Kwon, Microstructures, mechanical properties, and tribological behaviors of Cr-Al-N, Cr-Si-N, and Cr-Al-Si-N coatings by a hybrid coating system, Surf. and Coat. Tech. 201 (2007) 5223-5227.
DOI: 10.1016/j.surfcoat.2006.07.118
Google Scholar
[9]
S. Veprek, R.F. Zhang, M.G.J. Veprek-Heijman at. al., Superhard nanocomposites: origin of hardness enhancement, properties and applications, Surf. and Coat. Tech. 204 (2010) 1898-1906.
DOI: 10.1016/j.surfcoat.2009.09.033
Google Scholar
[10]
V.I. Kolesnikov, E.S. Novikov, O.V. Kudryakov, V.N. Varavka, The degradation mechanisms in ion-plasma nanostructured coatings under the conditions of contact cyclic loads, Journal of Physics: Conference Series. 1281 (2019) 012036.
DOI: 10.1088/1742-6596/1281/1/012036
Google Scholar
[11]
W.C. Oliver, G.M. Pharr An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of materials research. 7 (1992) 1564-1583.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[12]
ISO 141577-1:2002. Metallic Materials - Instrumented Indentation Test for Hardness and Materials Parameters - Part 1: Test Method, Standartinform, Moscow, (2013).
DOI: 10.3403/02697842u
Google Scholar
[13]
J. Chastain, R.C. King (Eds.), Handbook of X-ray Photoelectron Spectroscopy, Jr. Physical Electronics Inc., Minnesota, (1995).
Google Scholar
[14]
A.A. Galuska, H.H. Madden, Electron spectroscopy of graphite, graphite oxide and amorphous carbon, Surface Science. 32 (1998) 253-272.
DOI: 10.1016/0169-4332(88)90012-8
Google Scholar
[15]
C.V. Tompson, The yield stress of polycrystalline thin films, J. Mater. Res. 8 (1993) 237-238.
Google Scholar
[16]
W.D. Nix, Yielding and strain hardening of thin metal films on substrates, Scr. Mater. 39 (1998) 545-554.
DOI: 10.1016/s1359-6462(98)00195-x
Google Scholar
[17]
O.V. Kudryakov, V.I. Kolesnikov, D.S. Manturov, E.S. Novikov and V.N. Varavka: submitted to Journal of Friction and Wear (2020).
Google Scholar