[1]
I.A. Kurnoskin, S.E. Krylova, V.A. Zavyalov, A.Y. Plesovskikh, The influence of hardening process parameters on the surface layer structuring of medium-carbon alloy steel, Metallurgist-Heat Treaters Ural School. (2018) 71-73.
Google Scholar
[2]
I.A. Kurnoskin, S.E. Krylova, S.P. Oplesnin, V.A. Zavyalov, Development of laser hardening technology for surface layer of rotation bodies from medium-carbon steels, in: V.I. Zhadanov (Eds.), Collection of Materials of the International Youth Scientific Conference The Digest of International Conference for Young Researchers Student Scientific Societies - Regional Economy,, 2018, pp.299-306.
Google Scholar
[3]
A.G. Grigoryants, I.N. Shiganov, A.I. Misyurov, Laser Hardening Processes, Bauman MSTU Publishing House, Moscow, (2008).
Google Scholar
[4]
S.E. Krylova, S.P. Oplesnin, N.A. Minakov, A.S. Yasakov, A.O. Strizhov, The influence of process parameters of gas-powder surfacing on the structural characteristics of the restored surface layer of corrosion-resistant steels, Metallurgy and Metal Heat Treatment. 10 (2017) 35-40.
DOI: 10.1007/s11041-018-0204-7
Google Scholar
[5]
S.I. Bogodukhov and others, Increasing of Wear Resistance and Restoration Of Machine Parts and Apparatus: Manual, OOO IFT University, Orenburg, (2012).
Google Scholar
[6]
S.I. Bogodukhov, Technological Processes of Engineering and Repair Production: University Students Book, OOO IFT University, Orenburg, (2012).
Google Scholar
[7]
A.G. Skhirtladze, V.A. Skryabin, V.P. Boriskin, The repair of Technological Machines and Equipment: University Class Book, TNT, Stary Oskol, (2011).
Google Scholar
[8]
G.S. Zheleznov, A.G. Skhirtladze, Processes of mechanical and physical-chemical processing of materials: University Class Book, TNT, Moscow, (2012).
Google Scholar
[9]
S.I. Bogodukhov, V.F. Grebenyuk, A.D. Proskurin, Hardening and Surface Treatment in Mechanical Engineering: University Students Book, OSU, Orenburg, (2004).
Google Scholar
[10]
V.I. Shastin, S.V. Eliseev, N.P. Konovalov, S.A. Zaydes, RU Patent 2,615,851. (2017).
Google Scholar
[11]
K. Tsuda, RU Patent 2,468,397. (2012).
Google Scholar
[12]
S.A. Zhukova, A.V. Tyutyugin, B.I. Zadneprovsky, A.G. Zaitsev, E.A. Grinkin, V.E. Turkov, RU Patent 2,467,094. (2012).
Google Scholar
[13]
S. Netpu, P. Srichandr, Failure of a helical gear in a power plant, Eng. Fail. Anal. 32, (2013) 81-90.
DOI: 10.1016/j.engfailanal.2013.03.002
Google Scholar
[14]
P. De la Cruz, M. Odén, T. Ericsson, Effect of laser hardening on the fatigue strength and fracture of a B–Mn steel, Int. J. Fatigue. 20 (1998) 389-398.
DOI: 10.1016/s0142-1123(98)00010-3
Google Scholar
[15]
D. Kocanacuteda, S. Kocanacuteda, H. Tomaszek, Probabilistic Description of Fatigue Crack Growth In A Laser-Hardened Medium-Carbon Steel, Mater. Sci. 37 (2001) 374-382.
Google Scholar
[16]
Y. Murakami, T. Nomoto, T. Ueda, Y. Murakami, On the mechanism of fatigue failure in the superlong life regime (N>107cycles), Part I: Influence of hydrogen trapped by inclusions, Fatigue Fract. Engng. Mater. Struct. 23(11) (2000) 893-902.
DOI: 10.1046/j.1460-2695.2000.00328.x
Google Scholar
[17]
I. Fernández-Pariente, S. Bagherifard, M. Guagliano, R. Ghelichi, Fatigue behavior of nitrided and shot-peened steel with artificial small surface defects, Eng. Fract. Mech. 103 (2013) 2-9.
DOI: 10.1016/j.engfracmech.2012.09.014
Google Scholar