[1]
M.A. Fuqua, S. Huo, C.A. Ulven, Natural fiber reinforced composites, Polymer Reviews. 52 (2012) 259-320.
DOI: 10.1080/15583724.2012.705409
Google Scholar
[2]
N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, P. Bauchongkol, R.H. White, Coir fiber reinforced polypropylene composite panel for automotive interior applications, Fibers and Polymers. 12 (2011) 919-926.
DOI: 10.1007/s12221-011-0919-1
Google Scholar
[3]
M.K. Kuzman, N. Ayrilmis, Recent developments in modification technique for wood and wood-based composites, Sustainability of Forest-Based Industries in the Global Economy - Proceedings of Scientific Papers. (2020) 285-288.
Google Scholar
[4]
H.C. Obasi, Peanut husk filled polyethylene composites: effects of filler content and compatibilizer on properties, Journal of Polymers. 2015 (2015) 1-9.
DOI: 10.1155/2015/189289
Google Scholar
[5]
H.B. Huang, H.H. Du, W.H. Wang, H.G. Wang, Effects of the size of wood flour on mechanical properties of wood-plastic composites, Advanced Materials Research. 393-395 (2011) 76-79.
DOI: 10.4028/www.scientific.net/amr.393-395.76
Google Scholar
[6]
B. Dai, Q. Wang, W. Yan, Z. Li, W. Guo, Synergistic compatibilization and reinforcement of HDPE/wood flour composites, Journal of Applied Polymer Science. 133 (2015).
DOI: 10.1002/app.42958
Google Scholar
[7]
S.R. Sachin, T.K. Kannan, R. Rajasekar, Effect of wood particulate size on the mechanical properties of PLA biocomposite, Pigment & Resin Technology. 49(6) (2020) 465-472.
DOI: 10.1108/prt-12-2019-0117
Google Scholar
[8]
S.S. Raj, T.K. Kannan, M. Babu, M. Vairavel, Processing and testing parameters of PLA reinforced with natural plant fiber composite materials, International Journal of Mechanical and Production Engineering Research and Development. 9 (2019) 933-940.
Google Scholar
[9]
D. Friedrich, Effects from natural weathering on long-term structural performance of wood-polymer composite cladding in the building envelope, Journal of Building Engineering. 23 (2019) 68-76.
DOI: 10.1016/j.jobe.2019.01.025
Google Scholar
[10]
H.A. Rostampour, G. Ebrahimi, M. Tajvidi, M. Layeghi, Investigation on withdrawal resistance of various screws in face and edge of wood–plastic composite panel, Materials & Design. 32 (2011) 4100-4106.
DOI: 10.1016/j.matdes.2011.02.065
Google Scholar
[11]
Y. Arnandha, I. Satyarno, A. Awaludin, I.S. Irawati, Y. Prasetya, D.A. Prayitno, A. Amalia, Physical and mechanical properties of WPC board from sengon sawdust and recycled HDPE plastic, Procedia Engineering. 171 (2017) 695-704.
DOI: 10.1016/j.proeng.2017.01.412
Google Scholar
[12]
M. Hyvärinen, M. Ronkanen, T. Kärki, The effect of the use of construction and demolition waste on the mechanical and moisture properties of a wood-plastic composite, Composite Structures. 210 (2019) 321-326.
DOI: 10.1016/j.compstruct.2018.11.063
Google Scholar
[13]
B. Kord, P. Ravanfar, N. Ayrilmis, Influence of Organically Modified Nanoclay on Thermal and Combustion Properties of Bagasse Reinforced HDPE Nanocomposites, Journal of Polymers and the Environment. 25 (2017) 1198-1207.
DOI: 10.1007/s10924-016-0897-x
Google Scholar
[14]
A.M. Kuzmin, E.A. Radaikina, Technology development for the production of thermoplastic composites with agricultural fillers by compounding method on co-directional twin screw extruder, IOP Conference Series: Materials Science and Engineering. 873 (2020) 012022.
DOI: 10.1088/1757-899x/873/1/012022
Google Scholar
[15]
A. Klyosov, Wood Plastic Composites. Wiley Interscience, Hoboken, New York, (2007).
Google Scholar
[16]
M.Z. Rayaz Khan, S.K. Srivastava, M.K. Gupta, A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications, Polymer Testing. 89 (2020) 106721.
DOI: 10.1016/j.polymertesting.2020.106721
Google Scholar
[17]
D.D.P. Moreno, D. Hirayama, C. Saron, Accelerated aging of pine wood waste/recycled LDPE composite, Polymer Degradation and Stability. 149 (2018) 39-44.
DOI: 10.1016/j.polymdegradstab.2018.01.014
Google Scholar
[18]
A. Hejna, M. Przybysz-Romatowska, P. Kosmela, Ł. Zedler, J. Korol, K. Formela, Recent advances in compatibilization strategies of wood-polymer composites by isocyanates, Wood Science and Technology. 54 (2020) 1091-1119.
DOI: 10.1007/s00226-020-01203-3
Google Scholar
[19]
J. Korol, A. Hejna, D. Burchart-Korol, J. Wachowicz, Comparative analysis of carbon, ecological, and water footprints of polypropylene-based composites filled with cotton, jute and kenaf fibers, Materials. 13 (2020) 3541.
DOI: 10.3390/ma13163541
Google Scholar
[20]
P. Borysiuk, J. Wilkowski, K. Krajewski, R. Auriga, A. Skomorucha, A. Auriga, Selected properties of flat-pressed wood-polymer composites for high humidity conditions, BioResources. 15 (2020) 5141-5155.
DOI: 10.15376/biores.15.3.5141-5155
Google Scholar
[21]
D. Basalp, F. Tihminlioglu, S.C. Sofuoglu, F. Inal, A. Sofuoglu, Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites, Waste and Biomass Valorization. 11 (2020) 5419-5430.
DOI: 10.1007/s12649-020-00986-7
Google Scholar
[22]
J. Bhaskar, S. Haq, S.B. Yadaw, Evaluation and testing of mechanical properties of wood plastic composite, J. Thermoplast. Compos. Mater. 25 (2011) 391-401.
DOI: 10.1177/0892705711406158
Google Scholar