[1]
G.V. Karpenko, I.I. Vasilenko, Corrosion Cracking of Steels, Tekhnika, Kiev, (1971).
Google Scholar
[2]
P.A. Rebinder, Physicochemical Mechanics, Znaniye, Moscow, (1958).
Google Scholar
[3]
A. Phillips, Survey of application of overhead transmission line polymer insulators in North America and summary of EPRI polymer insulator failure database, in: Proceedings of the World Conference and Exhibition on Insulators, Arresters and Bushings, Marbella, Spain, 2003, pp.147-157.
Google Scholar
[4]
Suspension and Tension Composite Insulators for Overhead Lines, in: CIGRE Working Group 10 of Study Committee 22, 1980, pp.22-80.
Google Scholar
[5]
L. Xiong, W. Shaon, F. Ju, Application and Evaluation of Composite Insulators in China. Applying New Technologies for Better Reliability and Lower Costs, in: Proceedings of the World Insulator Congress and Exibition, 2001, pp.29-42.
Google Scholar
[6]
Yu.N. Shumilov, Polymer insulators in Ukraine, Elektricheskiye Seti i Sistemy (Journal). 3 (2006) 25-31.
Google Scholar
[7]
B. Noble, S.J. Harris, M.J. Owen, Stress corrosion cracking of GRP pultruded rods in acid environments, J. Mater. Sci. 18 (1983) 1244-1254.
DOI: 10.1007/bf00551994
Google Scholar
[8]
A. Akhtar, J.S. Nadeau, J.Y. Wang, D.P. Romily, C. Taggart, Brittle Fracture of Nonceramic Insulators, Prepared by the British Columbia Hydro and Power Authority, Can. Elect. Assoc. Rep, (1986).
Google Scholar
[9]
M. Kumosa, L. Kumosa, D. Armentrout, Failure analyses of non-ceramic insulators: part i - brittle fracture characteristics, IEEE Electrical Insulation Magazine. 21(3) (2005) 14-27.
DOI: 10.1109/mei.2005.1437604
Google Scholar
[10]
Y. Hua, Sh. Yin, L. Feng, Bearing behavior and serviceability evaluation of seawater sea-sandconcrete beams reinforced with BFRP bars, Construction and Building Materials. 243 (2020) 118294.
DOI: 10.1016/j.conbuildmat.2020.118294
Google Scholar
[11]
Z. Dong, G. Wua, X.L. Zhao, H. Zhu, Y. Wei, Z. Yan, Mechanical properties of discrete BFRP needles reinforced seawater sea-sand concrete-filled GFRP tubular stub columns, Construction and Building Materials. 244 (2020) 118330.
DOI: 10.1016/j.conbuildmat.2020.118330
Google Scholar
[12]
M. Al Rifai, H. El-Hassan, T. El-Maaddawy, F. Abed, Durability of basalt FRP reinforcing bars in alkaline solution and moist concrete environments, Construction and Building Materials. 243 (2020) 118258.
DOI: 10.1016/j.conbuildmat.2020.118258
Google Scholar
[13]
D. Jia, Q. Guo, J. Mao, J. Lv, Z. Yang, Durability of glass fibre-reinforced polymer (GFRP) bars embedded in concrete under various environments. I: Experiments and analysis, Composite Structures. 234 (2020) 111687.
DOI: 10.1016/j.compstruct.2019.111687
Google Scholar
[14]
F. Guo, S. Al-Saadi, R.K. Singh Raman, X.L. Zhao, Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment, Corrosion Science. 256 (2020) 119484.
DOI: 10.1016/j.corsci.2018.06.022
Google Scholar
[15]
A.N. Blaznov, A.S. Krasnova, A.A. Krasnov, M.E. Zhurkovsky, Geometric and mechanical characterization of ribbed FRP rebars, Polym. Test. 63 (2017) 434-439.
DOI: 10.1016/j.polymertesting.2017.09.006
Google Scholar
[16]
A.V. Markova, V.F. Savin, Y.B. Zharinov, A.N. Blaznov, Corrosion resistance tests of strained rods from polymer composite materials, Inorganic Materials. 47(15) (2011) 1713-1716.
DOI: 10.1134/s0020168511150118
Google Scholar
[17]
GOST R 31938-2012. Polymer Composite Rebar for Concrete Reinforcement. General specifications, Standartinform, Moscow, (2014).
Google Scholar