[1]
P. Novák, Advanced powder metallurgy technologies, Materials. 13(7) (2020) 1742.
Google Scholar
[2]
A.M. Stolin, P.M. Bazhin, A.S. Konstantinov, et al, Production of large compact plates from ceramic powder materials by free shs compaction, Doklady Chemistry. 480 (2018) 136-138.
DOI: 10.1134/s0012500818060083
Google Scholar
[3]
K.B. Povarova, M.I. Alymov, O.S. Gavrilin, et al, Effect of the conditions of sintering W-Ni-Fe-Co heavy alloy nanopowders on the structure and density of compacted samples, Russian Metallurgy (Metally). 2007 (2007) 499-505.
DOI: 10.1134/s0036029507060109
Google Scholar
[4]
J.V. Eremeeva, S. Vorotilo, A.A. Gofman, V.Y. Lopatin, D.Y. Kovalev, Mechanochemical synthesis of Dy2TiO5 single-phase crystalline nanopowders and investigation of their properties, Inorganic Materials: Applied Research. 9(2) (2018) 291-296.
DOI: 10.1134/s2075113318020090
Google Scholar
[5]
Z.V. Eremeeva, L.V. Myakisheva, V.S. Panov, A.A. Nepapushev, D.A. Sidorenko, E.V. Apostolova, A.V. Lizunov, D.Y. Mishunin, Structure and properties of the boron carbide powder obtained by the mechanochemical synthesis of the carbon char and amorphous boron mix, Inorganic Materials: Applied Research. 10(1) (2019) 49-52.
DOI: 10.1134/s2075113319010088
Google Scholar
[6]
Z.V. Eremeeva, V.S. Panov, L.V. Myakisheva, A.A. Nepapushev, D.A. Sidorenko, A.V. Pavlik, E.V. Apostolova, A.I. Lizunov, Structure and properties of dysprosium titanate powder produced by the mechanochemical method, Russian Journal of Non-Ferrous Metals. 59(3) (2018) 304-310.
DOI: 10.3103/s1067821218030045
Google Scholar
[7]
M. Tokita, Recent and future progress on advanced ceramics sintering by Spark Plasma Sintering, Nanotechnologies in Russia. 10(3-4) (2015) 261-267.
DOI: 10.1134/s1995078015020202
Google Scholar
[8]
A.E. Kudryashov, Z.V. Eremeeva, E.A. Levashov, V.Y. Lopatin, A.V. Sevostyanova, E.I. Zamulaeva, On the application of carbon-containing electrode materials in electrospark alloying technology. Part 2. Structure and properties of two-layer coatings, Surface Engineering and Applied Electrochemistry. 54(6) (2018) 535-545.
DOI: 10.3103/s1068375518060078
Google Scholar
[9]
F. Naimi, L. Minier, S. Le Gallet, H. Couque, F. Bernard, Dense nanostructured nickel produced by SPS from mechanically activated powders: Enhancement of mechanical properties, Journal of Nanomaterials. 2013 (2013) 674843.
DOI: 10.1155/2013/674843
Google Scholar
[10]
I. Burmistrov, N. Gorshkov, N. Kovyneva, E. Kolesnikov, B. Khaidarov, G. Karunakaran, E.-B. Cho, N. Kiselev, D. Artyukhov, D. Kuznetsov, A. Gorokhovsky, High seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes, Renewable Energy. 157 (2020) 1-8.
DOI: 10.1016/j.renene.2020.04.001
Google Scholar
[11]
I. Burmistrov, N. Kovyneva, N. Gorshkov, A. Gorokhovsky, A. Durakov, D. Artyukhov, N. Kiselev, Development of new electrode materials for thermo-electrochemical cells for waste heat harvesting, Renewable Energy Focus. 29 (2019) 42-48.
DOI: 10.1016/j.ref.2019.02.003
Google Scholar
[12]
N.V. Gorshkov, V.G. Goffman, M.A. Vikulova, I.N. Burmistrov, A.V. Kovnev, A.V. Gorokhovsky, Dielectric properties of the polymer-matrix composites based on the system of Co-modified potassium titanate-polytetrafluorethylene, Journal of Composite Materials. 52 (2017) 135-144.
DOI: 10.1177/0021998317703692
Google Scholar
[13]
I. Burmistrov, N. Gorshkov, S. Anshin, E. Kolesnikov, K. Kuskov, I. Ilinykh, J. Issi, M. Vikulova, D. Kuznetsov, Enhancement of percolation threshold by controlling the structure of composites based on nanostructured carbon filler, Journal of Electronic Materials. 48(8) (2019) 5111-5118.
DOI: 10.1007/s11664-019-07287-3
Google Scholar
[14]
N. Gorshkov, M. Vikulova, M. Gorbunov, D. Mikhailova, I. Burmistrov, N. Kiselev, D. Artyukhov, A. Gorokhovsky, Synthesis of the hollandite-like copper doped potassium titanate high-k ceramics, Ceramics International. 47(4) (2021) 5721-5729.
DOI: 10.1016/j.ceramint.2020.10.158
Google Scholar
[15]
V.N. Shinkin, Simplified calculation of the bending torques of steel sheet and the roller reaction in a straightening machine, Steel in Translation. 47(10) (2017) 639-644.
DOI: 10.3103/s0967091217100072
Google Scholar
[16]
V.N. Shinkin, Failure of large-diameter steel pipe with rolling scabs, Steel in Translation. 47(6) (2017) 363-368.
DOI: 10.3103/s0967091217060109
Google Scholar
[17]
V.N. Shinkin, Arithmetical method of calculation of power parameters of 2N-roller straightening machine under flattening of steel sheet, CIS Iron and Steel Review. 14 (2017) 22-27.
DOI: 10.17580/cisisr.2017.02.05
Google Scholar
[18]
V.N. Shinkin, Springback coefficient of the main pipelines' steel large-diameter pipes under elastoplastic bending, CIS Iron and Steel Review. 14 (2017) 28-33.
DOI: 10.17580/cisisr.2017.02.06
Google Scholar
[19]
V.N. Shinkin, Asymmetric three-roller sheet-bending systems in steel-pipe production, Steel in Translation. 47(4) (2017) 235-240.
DOI: 10.3103/s0967091217040106
Google Scholar
[20]
V.S. Panov, J.V. Eremeeva, G.V. Miheev, R.A. Scoricov, G.H. Sharipzyanova, U.S. Ter-Vaganyants, Influence of nanosize particles and methods of mixing on mechanical abilities of SP-70 powder steel, Inorganic Materials: Applied Research. 7(2) (2016) 251-260.
DOI: 10.1134/s2075113316020155
Google Scholar
[21]
E.V. Simonova, Z.V. Eremeeva, V.Y. Lopatin, Y.Y. Kaplanskii, Effect of nanosize strengthening particles on the structure of aluminum-based composite materials, Metallurgist. 60(1-2) (2016) 103-111.
DOI: 10.1007/s11015-016-0259-x
Google Scholar
[22]
V.V. Mironov, L.E. Agureev, Z.V. Eremeeva, V.I. Kostikov, Effect of small additions of alumina nanoparticles on the strength characteristics of an aluminum material, Doklady Physical Chemistry. 481 (2018) 110-113.
DOI: 10.1134/s001250161808002x
Google Scholar