Analysis of Remagnetization Processes of High-Anisotropic Alloy after Heat Treatment

Article Preview

Abstract:

The simulation of the Sm(Co, Fe, Cu, Zr)7.5 type alloy domain structure formation after various thermal treatments was carried out by FMRM program based on a phenomenological approach to the analysis of the uniaxial highly anisotropic ferromagnets demagnetization processes. It is shown that the domain structure of the alloy in the thermally demagnetized state expands as the coercive force of the alloy decreases. It is noted that the domains size increasing process is associated not only with a decrease in the coercive force but also with a change in the influence of the magnetostatic interaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-61

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.N. Viktorov, A.S. Lileev, A.S. Perminov, B.G. Razumeiko, A.S. Starikova, E.A. Shuvaeva, Program of phenomenological modeling of the demagnetization processes of the highly anisotropic uniaxial magnetic materials, Certificate of Computer Program State Registration, RU 2009612954. (2009).

Google Scholar

[2] A.S. Lileev, V.N. Viktorov, B.G. Razumeiko, et al., Program for visualization of phenomenological modeling results of demagnetization processes of the highly anisotropic uniaxial magnetic materials, Certificate of Computer Program State Registration, RU 2013610413. (2012).

Google Scholar

[3] M. Schabes, A. Aharoni, Magnetostatic interaction fields for a three-dimensional array of ferromagnetic cubes, IEEE Transactions on Magnetics. 23(6) (1987) 3882-3888.

DOI: 10.1109/tmag.1987.1065775

Google Scholar

[4] X.Y. Xiong, T. Ohkubo, T. Koyama, et al., The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe, Acta Materialia. 52 (2004) 737-748.

DOI: 10.1016/j.actamat.2003.10.015

Google Scholar

[5] O. Gutfleisch, K.-H. Muller, K. Khlopkov, M. Wolf, A. Yan, R. Schafer, T. Gemming, L. Schultz, Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets, Acta Materialia. 54(4) (2006) 997-1008.

DOI: 10.1016/j.actamat.2005.10.026

Google Scholar

[6] A.S. Lileev, V.V. Pinkas, K.V. Voronchikhina, A. Gunbin, Reversible changes of coercive force in Sm-Co-Cu-Fe-Zr alloy for permanent magnets under cyclic heat treatment, Metal Science and Heat Treatment. 60 (2018) 489-493.

DOI: 10.1007/s11041-018-0306-2

Google Scholar

[7] H. Sepehri-Amin, J. Thielsch, J. Fischbacher, et al., Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets, Acta Materialia. 126 (2017) 1-10.

DOI: 10.1016/j.actamat.2016.12.050

Google Scholar

[8] D.B. Kargin, Y.V. Konyukhov, A.B. Biseken, A.S. Lileev, D.Y. Karpenkov, Structure, morphology and magnetic properties of hematite and maghemite nanopowders produced from rolling mill scale, Steel in Translation. (2020) 50(3) 151-158.

DOI: 10.3103/s0967091220030055

Google Scholar

[9] Y.V. Konyukhov, Heavy-metal extraction from wastewater by means of iron nanopowder, Steel in Translation. 48(2) (2018) 135-141.

DOI: 10.3103/s0967091218020080

Google Scholar

[10] V.N. Shinkin, The mathematical model of the thick steel sheet flattening on the twelve-roller sheet-straightening machine. Message 1. Curvature of sheet, CIS Iron and Steel Review. 12 (2016) 37-40.

DOI: 10.17580/cisisr.2016.02.08

Google Scholar

[11] V.N. Shinkin, Simplified calculation of the bending torques of steel sheet and the roller reaction in a straightening machine, Steel in Translation. 47(10) (2017) 639-644.

DOI: 10.3103/s0967091217100072

Google Scholar

[12] V.A. Fedorov, I.V. Ushakov, I.E. Permyakova, Mechanical properties and crystallization of an annealed cobalt-based amorphous alloy, Metally. 3 (2004) 108-113.

Google Scholar

[13] V.A. Fedorov, I.V. Ushakov, I.E. Permyakova, Mechanical properties and crystallization of an annealed cobalt-based amorphous alloy, Russian Metallurgy (Metally). 2004(3) (2004) 293-297.

Google Scholar

[14] V.A. Fedorov, I.V. Ushakov, I.E. Permyakova, Deformation and fracture features of annealed metallic glass ribbons of a Co-Fe-Cr-Si system during microindentation, Bulletin of the Russian Academy of Sciences: Physics. 69(9) (2005) 1537-1542.

Google Scholar

[15] D.I. Ryzhonkov, Yu.V. Konyukhov, V.M. Nguyen, Kinetic regularities and mechanisms of hydrogen reduction of nanosized oxide materials in thin layers, Nanotechnologies in Russia. 12(11-12) (2017) 620-626.

DOI: 10.1134/s1995078017060076

Google Scholar

[16] N.V. Minh, G. Karunakaran, Y. Konyukhov, Effect of mixing modes and nano additives on the densification and sintering behavior of tungsten material under spark plasma sintering, Journal of Cluster Science. 28(5) (2017) 2905-2917.

DOI: 10.1007/s10876-017-1268-z

Google Scholar

[17] V.N. Shinkin, Failure of large-diameter steel pipe with rolling scabs, Steel in Translation. 47(6) (2017) 363-368.

DOI: 10.3103/s0967091217060109

Google Scholar

[18] V.N. Shinkin, Arithmetical method of calculation of power parameters of 2N-roller straightening machine under flattening of steel sheet, CIS Iron and Steel Review. 14 (2017) 22-27.

DOI: 10.17580/cisisr.2017.02.05

Google Scholar

[19] V.N. Shinkin, Springback coefficient of the main pipelines' steel large-diameter pipes under elastoplastic bending, CIS Iron and Steel Review. 14 (2017) 28-33.

DOI: 10.17580/cisisr.2017.02.06

Google Scholar

[20] I.V. Ushakov, V.A. Feodorov, I.J. Permyakova, Determination of plasticity of thermally treated metallic glass by U-Method and microindentation, Proceedings of SPIE - The International Society for Optical Engineering. 5127 (2002) 246-251.

DOI: 10.1117/12.517988

Google Scholar

[21] I.V. Ushakov, V.A. Feodorov, I.J. Permyakova, Influence of etching and annealing on evolution of surface structure of metallic glass, Proceedings of SPIE - The International Society for Optical Engineering. 5400 (2004) 265-268.

DOI: 10.1117/12.555529

Google Scholar

[22] I.V. Ushakov, V.A. Feodorov, Effect of annealing temperature of amorphous metal alloy on cobalt base on cracks formation under local loading, Fizika i Khimiya Obrabotki Materialov. 6 (2002) 77-80.

Google Scholar

[23] V.M. Nguyen, G. Karunakaran, T.H. Nguyen, E.A. Kolesnikov, M.I. Alymov, V.V. Levina, Yu.V. Konyukhov, Enhancement of structural and mechanical properties of Fe+0.5%C steel powder alloy via incorporation of Ni and Co nanoparticles, Letters on Materials. 10(2) (2020) 174-178.

DOI: 10.22226/2410-3535-2020-2-174-178

Google Scholar

[24] V.M. Nguyen, R. Khanna, Y. Konyukhov, T.H. Nguyen, I. Burmistrov, V. Levina, I. Golov, G. Karunakaran, Spark plasma sintering of cobalt powders in conjunction with high energy mechanical treatment and nanomodification, Processes. 8(5) (2020) 627.

DOI: 10.3390/pr8050627

Google Scholar

[25] V.N. Shinkin, Asymmetric three-roller sheet-bending systems in steel-pipe production, Steel in Translation. 47(4) (2017) 235-240.

DOI: 10.3103/s0967091217040106

Google Scholar

[26] V.N. Shinkin, Calculation of steel sheet's curvature for its flattening in the eight-roller straightening machine, Chernye Metally. 2 (2017) 46-50.

Google Scholar

[27] I.V. Ushakov, Method of mechanical testing of laser treated metallic glass by indenters with different geometry, Proceedings of SPIE - The International Society for Optical Engineering. 6597 (2007) 659714.

DOI: 10.1117/12.726773

Google Scholar

[28] V.M. Nguyen, Y.V. Konyukhov, D.I. Ryzhonkov, Influence of a rotary electromagnetic field and mechanical stimulation on the production of cobalt nanopowder by reduction with hydrogen, Steel in Translation. 48(2) (2018) 73-77.

DOI: 10.3103/s0967091218020109

Google Scholar