[1]
A.V. Aldunin, A.V. Shumeev, Investigation of the distribution of plastic deformation over the thickness of steel strips, News MSTU MAMI,. 4 (22) (2014) v. 2 4-8.
DOI: 10.17816/2074-0530-67604
Google Scholar
[2]
A.V. Aldunin, Research, Development and Implementation of Effective Eechnologies for the Production of Strips and Tapes from Steel and Non-Ferrous Metal Alloys with a Given Structure and Properties, Abstract of the thesis for the degree of doctor of technical sciences, Specialty 05.16.05 Processing of metals by pressure,, Moscow, (2011).
Google Scholar
[3]
A.Yu. Putnoki, V.T. Tilik, V.G. Ivanchenko and other, Structure, distribution of elements and properties of hot-rolled sheet low-carbon steel 08ps, Fundamental and Applied Problems of Ferrous Metallurgy. 20 (2009) 196-205.
Google Scholar
[4]
V.B. Belousov, S.A. Tipalin, Y.G. Kalpin, How the material thickness affects 0.08% carbon cold-rolled sheet steel, Solid State Phenomena. 299 (2020) 409-418.
DOI: 10.4028/www.scientific.net/ssp.299.409
Google Scholar
[5]
S.A. Tipalin, V.B. Belousov, S.I. Lyubetskaya, Testing the cross-sectional microhardness in sheets with a 0.08% carbon concentration, Solid State Phenomena. 316 (2021) 269-275.
DOI: 10.4028/www.scientific.net/ssp.316.269
Google Scholar
[6]
V.V. Muravyov, O.V. Murav'eva, L.V. Volkova, Influence of anisotropy of mechanical properties of thin-sheet steel rolled stock on informative parameters of Lamb waves, Steel. 10 (2016) 75-79.
Google Scholar
[7]
D.S. Tsvetkov, A.M. Korchagin, V.V. Mikheev and other, Influence of small plastic deformations during straightening on the mechanical properties of strip rolled, in: A.L. Kuzminov (Eds.), Scientific and technical progress in ferrous metallurgy. I International Scientific and Technical Conference, 2013, pp.382-390.
Google Scholar
[8]
S.A. Tipalin, Determination of accumulated deformation in the process of extruding a technological groove, Procurement in Mechanical Engineering. 8 (2013) 22-24.
Google Scholar
[9]
N.F. Shpunkin, S.A. Typalin, Study of the properties of multilayer sheet materials, Procurement in Mechanical Engineering. 1 (2013) 28-31.
Google Scholar
[10]
A.B. Bondarev, Nitinol sheets, thin, large: properties and structure, Eurasian Union of Scientists (ESU). 4-3(13) ( 2015) 132-134.
Google Scholar
[11]
R.L. Shatalov, S.A. Tipalin, V.A. Medvedev, Distribution of decarburized layer and hardness of vessels made of steel 50 after hot stamping on a rolling-press line, Ferrous metal. 5 (2020) 26-30.
Google Scholar
[12]
Yu.G. Kalpin, Yu.K. Filippov, S.A. Tipalin, A.G. Zaitsev, The study of stamping rod tupe parts using eccentrically located head, Chernye Metally. 7 (2019) 41-46.
Google Scholar
[13]
Yu.G. Kalpin, Yu.K. Filippov, S.A. Egorov, V.I. Mishin, Sample for mechanical testing of materials by plastic uniaxial upsetting, Chernye Metally. 8 (2019) 62-66.
Google Scholar
[14]
S.A. Tipalin, M.A. Petrov, Y.A. Morgunov, Theoretical investigation of the bending process of the pre-strained metal sheet, Solid State Phenomena. 299 (2020) 351-358.
DOI: 10.4028/www.scientific.net/ssp.299.351
Google Scholar
[15]
I.V. Buldakova, L.V. Volkova, V.V. Muravyov, Distribution of stresses in samples of pipes of main gas pipelines with welded joints, Intelligent Systems in Production. 18(1) (2020) 4-8.
Google Scholar
[16]
Information on http://www.rbmc.ru/sites/rbmc.ru/files/stal_jfe_series_le_c_cat.3_rus.pdf.
Google Scholar
[17]
A.P. Kolikov, N.L. Lisunets, N.F. Shpunkin and other, Influence of residual stresses on the quality of products during cold working by pressure of sheet blanks, News MSTU MAMI,. 2(12) (2011) 139-142.
DOI: 10.17816/2074-0530-69927
Google Scholar
[18]
C.B. Smith, R.S. Mishra, Friction Stir Processing for Enhanced Low Temperature Formability, first ed., Butterworth-Heinemann, (2014).
DOI: 10.1016/b978-0-12-420113-2.00001-5
Google Scholar
[19]
S. Song, M.M. Yovanovich, Relative contact pressure: dependence upon surface roughness and vickers microhardness, Journal of Thermophysics and Heat Transfer. 2(1) (1988) 43-47.
DOI: 10.2514/3.60
Google Scholar
[20]
Yu.G. Kalpin, V.I. Perfilov P.A., Petrov, V.A. Ryabov, Yu.K. Filippov, Resistance to Deformation and the Plasticity of Pressure-Deformed Metals, MSTU: MAMI, Moscow, (2007).
Google Scholar
[21]
M. Brunet, F. Morestin, H. Walter-Leberre, Failure analysis of anisotropic sheet-metals using a non-local plastic damage model, Journal of Materials Processing Technology. (2005) 457-470.
DOI: 10.1016/j.jmatprotec.2005.05.046
Google Scholar
[22]
P. van Houtte, Anisotropic plasticity, in: C. Sturgess (Eds.), Numerical Modeling of Material Deformation Process: Research, Development and Applications, Springer-Verlag, London, 1992, pp.84-111.
DOI: 10.1007/978-1-4471-1745-2_4
Google Scholar
[23]
R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society A. 193(1033) (1948) 281-297.
Google Scholar
[24]
M.A. Mott, Micro-Indentation Hardness Testing, Butterworths Scientific Publications, (1956).
Google Scholar
[25]
GOST 9450-76. Measurement of Microhardness by Indentation of Diamond Tips, Izdatel'stvo standartov, Moscow, (1993).
Google Scholar
[26]
G.D. Del, Determination of Stresses in the Plastic Region by the Distribution of Hardness, Mechanical Engineering, Moscow, (1971).
Google Scholar