[1]
A.A. Ilyin, B.A. Kolachev, I.S. Polkin. Titanium Alloys. Composition, Structure, Properties. Handbook, VILS – MATI, Moscow, (2009).
Google Scholar
[2]
N.A. Nochovnaya, V.G. Antashev, A.A. Shiryaev, Ye.B. Alekseev. The choice of a new heat-resistant titanium alloy composition via mathematical simulation techniques, Titanium. 1 (2015) 10-17.
Google Scholar
[3]
A.S. Kudryavtsev, E.A. Karasev, N.F. Molchanova. Titanium for civil shipbuilding, Light Alloy Technology. 1 (2010) 85-91.
Google Scholar
[4]
Yu.B. Egorova, L.V. Davydenko, A.V. Shmirova, Influence of chemical composition and heat treatment modes on mechanical properties of titanium alloy VT22 bars, Solid State Phenomena. 229 (2020) 582-587.
DOI: 10.4028/www.scientific.net/ssp.299.582
Google Scholar
[5]
Yu.B. Egorova, V.N. Uvarov, L.V. Davydenko, R.A. Davydenko, Use of industrial monitoring results for predicting mechanical properties of titanium alloy semiproducts, Metal Science and Heat Treatment. 59(5-6) (2017) 377-383.
DOI: 10.1007/s11041-017-0159-0
Google Scholar
[6]
S.V. Skvortsova, N.G. Mitropolskaya, M.A. German, G.V. Gurtovaya, Influence of structure on machinability of the BCT2K alloy, Metally. 4 (2016) 79-87.
Google Scholar
[7]
B.A. Kolachev, Yu.B. Egorova, A.A. Il'in, L.V. Davidenko, On the relation between the machinability of titanium alloys and their chemical and phase compositions, Russian Metallurgy (Metally). 3 (2002) 284-289.
Google Scholar
[8]
S.G. Glazunov, V.N. Moiseyev, Structural Titanium alloys, Metallurgiya, Moscow, (1974).
Google Scholar
[9]
O.P. Solonina, S.G. Glazunov, Heat-Resistant Titanium Alloys, Metallurgiya, Moscow, (1976).
Google Scholar
[10]
A.T. Tumanov (Eds.), Aviation Materials: Handbook. Magnesium and Titanium Alloys, Vol. 5, ONTI, Moscow, (1973).
Google Scholar
[11]
Ye.N. Kablov (Eds.), Aviation Materials: Handbook. Titanium Alloys, Vol. 6, VIAM, Moscow, (2010).
Google Scholar
[12]
I.N. Fridlyander, O.G. Senatorova, O.Ye. Osintsev et al., Mechanical Engineering. Encyclopedia. Vol. 2 and 3. Non-Ferrous Metals and Alloys, Mashinostroyeniye, Moscow, (2001).
Google Scholar
[13]
V.N. Moiseyev, F.R. Kulikov, Yu.G. Kirillov, L.V. Shokholova, Yu.V. Vaskin, Welded Seams of Titanium Alloys, Metallurgiya, Moscow, (1979).
Google Scholar
[14]
P.G. Miklyayev, Mechanical Properties of Light Alloys at Various Temperatures and Rates of Pressure Shaping, Metallurgiya, Moscow, (1994).
Google Scholar
[15]
Information on: http://viam-works.ru/ru/articles.
Google Scholar
[16]
E.N. Kablov, O.S. Kashapov, T.V. Pavlova, N.A. Nochovnaya, Development of an industrial technology manufacturing of semi-finished products from near-alpha titanium alloy VT41, Titan. 2 (2016) 33-38.
Google Scholar
[17]
M.S. Belyayev, M.A. Gorbovets, O.S. Kashapov, I.A. Khodinev, Mechanical properties and structure of the BT41 titanium alloy, Non-Ferrous Metals. 8 (2014) 66-71.
Google Scholar
[18]
O.S. Kashapov, T.V. Pavlova, A.R. Istrakova, V.S. Kalashnikov, Increasing hardness of hard-resistant pseudo-alpha titanium alloys, Aviation Materials and Technologies. S5 (2014) 73-80.
DOI: 10.18577/2071-9140-2014-0-s5-73-80
Google Scholar
[19]
T.V. Pavlova, O.S. Kashapov, N.A. Nochovnaya, Titanium alloys for gas turbine engines, Vse Materialy (All Materials). Encyclopedia. 5 (2012) 8-14.
Google Scholar
[20]
N.A. Sharapova, A.A. Zhivushkin, A.V. Vasilyev, O.S. Kashapov, T.V. Pavlova, V.I. Ivanov, Use of new titanium alloys to construct a compressor for a promising aircraft engine, in: Ye.N. Kablov (Eds.), Modern Titanium Alloys and Problems of their Development, VIAM, Moscow, 2010, pp.62-68.
Google Scholar