Predicting Strength of Titanium Alloys Using Aluminum and Molybdenum Equivalents at Operating Temperatures

Article Preview

Abstract:

This study contains the results of statistical studies of strength of sheeted products and bars made from α-, near α-, and α+β titanium alloys based on their composition. Based on summarizing the literature data, we have studied the ultimate tensile strength after mill annealing of 30 serial and experimental alloys at testing temperatures between 20 and 600°C. We have also substantiated the possibility to evaluate the tensile strength of semi-finished products using the strength equivalents (such as aluminum and molybdenum) of alloying elements and impurities at various temperatures. We have put forth models that help to predict the ultimate strength of titanium alloys based on their composition and the operating temperature with a confidence level of 0.95 and statistical errors comparable with the regulated spread.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-20

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Ilyin, B.A. Kolachev, I.S. Polkin. Titanium Alloys. Composition, Structure, Properties. Handbook, VILS – MATI, Moscow, (2009).

Google Scholar

[2] N.A. Nochovnaya, V.G. Antashev, A.A. Shiryaev, Ye.B. Alekseev. The choice of a new heat-resistant titanium alloy composition via mathematical simulation techniques, Titanium. 1 (2015) 10-17.

Google Scholar

[3] A.S. Kudryavtsev, E.A. Karasev, N.F. Molchanova. Titanium for civil shipbuilding, Light Alloy Technology. 1 (2010) 85-91.

Google Scholar

[4] Yu.B. Egorova, L.V. Davydenko, A.V. Shmirova, Influence of chemical composition and heat treatment modes on mechanical properties of titanium alloy VT22 bars, Solid State Phenomena. 229 (2020) 582-587.

DOI: 10.4028/www.scientific.net/ssp.299.582

Google Scholar

[5] Yu.B. Egorova, V.N. Uvarov, L.V. Davydenko, R.A. Davydenko, Use of industrial monitoring results for predicting mechanical properties of titanium alloy semiproducts, Metal Science and Heat Treatment. 59(5-6) (2017) 377-383.

DOI: 10.1007/s11041-017-0159-0

Google Scholar

[6] S.V. Skvortsova, N.G. Mitropolskaya, M.A. German, G.V. Gurtovaya, Influence of structure on machinability of the BCT2K alloy, Metally. 4 (2016) 79-87.

Google Scholar

[7] B.A. Kolachev, Yu.B. Egorova, A.A. Il'in, L.V. Davidenko, On the relation between the machinability of titanium alloys and their chemical and phase compositions, Russian Metallurgy (Metally). 3 (2002) 284-289.

Google Scholar

[8] S.G. Glazunov, V.N. Moiseyev, Structural Titanium alloys, Metallurgiya, Moscow, (1974).

Google Scholar

[9] O.P. Solonina, S.G. Glazunov, Heat-Resistant Titanium Alloys, Metallurgiya, Moscow, (1976).

Google Scholar

[10] A.T. Tumanov (Eds.), Aviation Materials: Handbook. Magnesium and Titanium Alloys, Vol. 5, ONTI, Moscow, (1973).

Google Scholar

[11] Ye.N. Kablov (Eds.), Aviation Materials: Handbook. Titanium Alloys, Vol. 6, VIAM, Moscow, (2010).

Google Scholar

[12] I.N. Fridlyander, O.G. Senatorova, O.Ye. Osintsev et al., Mechanical Engineering. Encyclopedia. Vol. 2 and 3. Non-Ferrous Metals and Alloys, Mashinostroyeniye, Moscow, (2001).

Google Scholar

[13] V.N. Moiseyev, F.R. Kulikov, Yu.G. Kirillov, L.V. Shokholova, Yu.V. Vaskin, Welded Seams of Titanium Alloys, Metallurgiya, Moscow, (1979).

Google Scholar

[14] P.G. Miklyayev, Mechanical Properties of Light Alloys at Various Temperatures and Rates of Pressure Shaping, Metallurgiya, Moscow, (1994).

Google Scholar

[15] Information on: http://viam-works.ru/ru/articles.

Google Scholar

[16] E.N. Kablov, O.S. Kashapov, T.V. Pavlova, N.A. Nochovnaya, Development of an industrial technology manufacturing of semi-finished products from near-alpha titanium alloy VT41, Titan. 2 (2016) 33-38.

Google Scholar

[17] M.S. Belyayev, M.A. Gorbovets, O.S. Kashapov, I.A. Khodinev, Mechanical properties and structure of the BT41 titanium alloy, Non-Ferrous Metals. 8 (2014) 66-71.

Google Scholar

[18] O.S. Kashapov, T.V. Pavlova, A.R. Istrakova, V.S. Kalashnikov, Increasing hardness of hard-resistant pseudo-alpha titanium alloys, Aviation Materials and Technologies. S5 (2014) 73-80.

DOI: 10.18577/2071-9140-2014-0-s5-73-80

Google Scholar

[19] T.V. Pavlova, O.S. Kashapov, N.A. Nochovnaya, Titanium alloys for gas turbine engines, Vse Materialy (All Materials). Encyclopedia. 5 (2012) 8-14.

Google Scholar

[20] N.A. Sharapova, A.A. Zhivushkin, A.V. Vasilyev, O.S. Kashapov, T.V. Pavlova, V.I. Ivanov, Use of new titanium alloys to construct a compressor for a promising aircraft engine, in: Ye.N. Kablov (Eds.), Modern Titanium Alloys and Problems of their Development, VIAM, Moscow, 2010, pp.62-68.

Google Scholar