The Formation Energy of Martensite Nuclei and the Phase Transition Kinetics under the Action of an External Magnetic Field

Article Preview

Abstract:

The formation energy of martensite nuclei in the austenite matrix is calculated. Nanoclusters with ferromagnetic order, which exist in austenite above the Curie temperature, reduce the formation energy of a critical martensite nucleation center when exposed to an external magnetic field. The data obtained are explained by the magnetic separation of the initial phase under the action of a magnetic field. A fluctuation increase in nanovolumes with a ferromagnetic order in austenite increases the energy in a atoms group of the matrix phase with a parallel spins arrangement. As a result, the nucleation rate of the martensite phase increases and the martensitic transformation proceeds more completely.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.M. Schastlivtsev, Y.V. Kaletina, E.A. Fokina, D.A. Mirzaev, Effect of external actions and a magnetic field on martensitic transformation in steels and alloys, Met. Sci. Heat Treat. 58 (2016) 247-253.

DOI: 10.1007/s11041-016-9997-4

Google Scholar

[2] V.N. Pustovoit, Y.V. Dolgachev, L.P. Aref'eva, Changes in the structure of steel during quenching in a magnetic field, Materials Science Forum. 989 (2020) 79-84.

DOI: 10.4028/www.scientific.net/msf.989.79

Google Scholar

[3] V.D. Sadovskii, P.A. Malinen, L.A. Mel'nikov, Influence of high pressure and a pulsed magnetic field on the martensite transformation in Fe− Ni and Fe− Ni− Mn alloys, Met. Sci. Heat Treat. 14 (1972) 775-781.

DOI: 10.1007/bf00652029

Google Scholar

[4] V.N. Pustovoit, Y.V. Dolgachev, Special features of the structure of martensite formed by hardening of steel in magnetic field in the temperature range of superplasticity of austenite, Met. Sci. Heat Treat. 53 (2012) 515-519.

DOI: 10.1007/s11041-012-9427-1

Google Scholar

[5] Yu.V. Kaletina, Phase transformations in steels and alloys in magnetic field, Met. Sci. Heat Treat. 50 (2008) 413-421.

DOI: 10.1007/s11041-009-9085-0

Google Scholar

[6] V.N. Pustovoit, Y.V. Dolgachev, Y.M. Dombrovskii, Use of the superplasticity phenomenon of steel for internal, magnetic correcting a product, Solid State Phenom. 265 (2017) 745-749.

DOI: 10.4028/www.scientific.net/ssp.265.745

Google Scholar

[7] V.N. Pustovoit, Y.V. Dolgachev, Distortion-free heat treatment of thin rods in magnetic field, Mater. Perform. and Character. 8 (2018) 320-324.

DOI: 10.1520/mpc20170159

Google Scholar

[8] V.D. Sadovskii, Magnetic field and phase transformations in steel, Met. Sci. Heat Treat. 7 (1966) 441-443.

DOI: 10.1007/bf00650723

Google Scholar

[9] V.N. Pustovoit, Yu.V. Dolgachev, L.P. Aref'eva, Martensite nucleation under conditions of austenite superplasticity and external magnetic field, IOP Conference Series: Materials Science and Engineering. 969 (2020) 012009.

DOI: 10.1088/1757-899x/969/1/012009

Google Scholar

[10] V.N. Pustovoit, Y.V. Dolgachev, Ferromagnetically ordered clusters in austenite as the areas of martensite formation, Emerg. Mater. Research. 6 (2017) 249-253.

DOI: 10.1680/jemmr.17.00042

Google Scholar

[11] S. Spooner, B.L. Averbach, Spin correlations in iron, Physical Review. 142 (1966) 291-299.

DOI: 10.1103/physrev.142.291

Google Scholar

[12] V.N. Pustovoit, Y.V. Dolgachev, L.P. Aref'eva, Features of martensitic transformation in steel during quenching in a constant magnetic field, Mater. Sci. Forum. 946 (2019) 304-308.

DOI: 10.4028/www.scientific.net/msf.946.304

Google Scholar

[13] Yu.V. Dolgachev, V.N. Pustovoit, I.O. Filonenko, I.V. Ivankov, On modeling the martensite nucleation on ferromagnetic clusters, Vestnik of Don State Technical University. 20 (2020) 51-60.

DOI: 10.23947/1992-5980-2020-20-1-51-60

Google Scholar

[14] V.N. Pustovoit, Y.V. Dolgachev, Y.M. Dombrovskii, Y.A. Kornilov, On shear nucleation sites at phase transformations in steel, Izvestiya Ferrous Metallurgy. 61 (2018) 114-119.

DOI: 10.17073/0368-0797-2018-2-114-119

Google Scholar

[15] V.N. Pustovoit, Yu.V. Dolgachev, Revisiting the nature of sites of martensite nucleation during steel hardening, Izvestiya Ferrous Metallurgy. 62 (2019) 109-114.

DOI: 10.17073/0368-0797-2019-2-109-114

Google Scholar

[16] H. Knapp, U. Dehlinger, Mechanics and kinetics of martensite formation without diffusion, Acta Metallurgica. 4 (1956) 289-297.

Google Scholar

[17] V.N. Gridnev, Y.N. Petrov, Fine structure of martensite in carbon steels, Metal Science and Heat Treatment. 9 (1967) 586-590.

DOI: 10.1007/bf00654293

Google Scholar

[18] P.Yu. Volosevich, V.N. Gridnev, Yu.N Petrov, Investigation of the structural changes of austenite during the martensitic transformation in steels with higher stacking fault energy, Physics of Metals and Metallography. 34 (1972) 108-113.

Google Scholar

[19] Ya.D. Vishnyakov, G.S. Fainshtein, Dependence of the probability of formation of laves phases of various crystal structures on the density of stacking faults, Soviet Physics Journal. 14 (1971) 1074-1079.

DOI: 10.1007/bf00820070

Google Scholar

[20] Ya.D. Vishnyakov, G.S. Faynshteyn, Possible scheme of cyclic formation of martensite structures during plastic deformation of steels with low energy of stacking faults, Physics of Metals and Metallography. 52 (1981) 195-197.

Google Scholar

[21] V.A. Lobodyuk, E.I. Estrin, Martensitic Transformations, Cambridge International Science Publishing, (2014).

Google Scholar

[22] G.B. Olson, W.S. Owen, Martensite: A Tribute to Morris Cohen, ASM International, (1992).

Google Scholar

[23] Z. Nishiyama, Martensitic Transformation, Elsevier, (2012).

Google Scholar

[24] R.M. Bozorth, Ferromagnetism, Wiley-VCH, (1993).

Google Scholar

[25] S. Chikazumi, C.D. Graham, Physics of ferromagnetism, in: C.D. Graham (Eds.), Issue 94 of International Series of Monographs on Physics, Oxford Science Publications, 2009, 655 p.

Google Scholar

[26] A. Goldman, Handbook of Modern Ferromagnetic Materials, Publisher Springer Science & Business Media, (2012).

Google Scholar