Mechanism of EDM Intensification at Ultrasound Application

Article Preview

Abstract:

This paper considers some theoretical provisions on the impact ultrasonic mechanical vibrations have on the throughput of an electroerosive piercing of small-diameter holes. The approximate estimates confirm the hypothesis that the cumulative jets mechanism makes the greatest contribution to the intensification of a multiphase medium flow in the interelectrode gap. A model is proposed for a periodic localization of the cavitation region in the bottom part of the annular side gap. It allows explaining the occurrence of a multiphase medium flow during hole processing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-27

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.K. Mitskevich, Impact of electrode vibrations on the process of electrospark processing, Electrospark Processing of Materials. (1963) 173-178.

Google Scholar

[2] M.K. Mitskevich, A.I. Bushin, I.A. Bakuto, I. G. Nekrashevich (Eds.), Electroerosive Processing of Materials, Science and Technology, Minsk, (1988).

Google Scholar

[3] D. Kremer, J.L. Lebrun, B. Hosari, A.Moisan, Effects of ultrasonic vibrations in EDM, CIRP Annals, 38(1) (1989) 199-202.

DOI: 10.1016/s0007-8506(07)62684-5

Google Scholar

[4] I.I. Belov, A.A. Gruzdev, B.P. Saushkin, Impact of mode parameters on the technological characteristics of the operation of electroerosive piercing of holes in nozzles, Izvestia Moscow Polytechnic University,. 2(2) (2012) 77-83.

Google Scholar

[5] A.A. Gruzdev, A.N. Korolev, A.V. Selivestrov, Yu.A. Morgunov, Multi-coordinate electroerosive piercing machine EP‒310P, Technology of Mechanical Engineering. 3 (2016) 29-32.

Google Scholar

[6] G. Cusanelli, M. Burgener, W. Ammann, P.-E. Grize, Hybrid EDM: ultrasonic vibration assisted edm applied to micro-holes, Procedia CIRP. 6 (2013) 523-527.

Google Scholar

[7] A. Schorderet, Y. Berthier, A. Prenleloup, D. Kremer, G. Cusanell, Hybrid EDM: parametric design of ultrasonic assistance device for EDM micro-drilling, Procedia CIRP. 6 (2013) 571-575.

Google Scholar

[8] S. Kumar, S. Grover, R.S. Walia, Optimisation strategies in ultrasonic vibration as-sisted electrical discharge machining: a review, International Journal of Precision Technology. 7 (2017) 51-84.

DOI: 10.1504/ijptech.2017.10005512

Google Scholar

[9] Yu.A. Morgunov, B.P. Saushkin, G.B. Saushkin, Micromachining of Titanium-Alloy Components, Russian Engineering Research. 39(2) (2019) 125-128.

DOI: 10.3103/s1068798x19020229

Google Scholar

[10] Yu.A. Morgunov, A.I. Opalnitskiy, B.P. Saushkin, Increasing innovation capacity of the methods of ultrasonic machining of ceramics and composites with a diamond-impregnated tool, Materials Science Forum. 973 (2019) 152-156.

DOI: 10.4028/www.scientific.net/msf.973.152

Google Scholar

[11] Y. Liu, H. Chang, W. Zhang, F. Ma, Z. Sha, S. Zhang, A simulation study of debris removal process in ultrasonic vibration assisted electrical discharge machining (EDM) of deep holes, Micromachines. 9(8) (2018) 378.

DOI: 10.3390/mi9080378

Google Scholar

[12] Y.C. Lin, J.C Hung, H.M. Lee, A.C. Wang, J.T. Chen, Machining characteristics of a hybrid process of EDM in gas combined with ultrasonic vibration, Int J Adv Manuf Technol. 92 (2017) 2801-2808.

DOI: 10.1007/s00170-017-0369-z

Google Scholar

[13] Z.Q. Deng, Y.W. Zhu, F. Wang, X. Gu, D Yang, Analysis and experimental study of vibration system characteristics of ultrasonic compound electrical machining, Strength of Materials. 49 (2017) 37-44.

DOI: 10.1007/s11223-017-9839-7

Google Scholar

[14] H. Ni, H. Gong, Y.H. Dong, F.Z. Fang, Y. Wang, A comparative investigation on hybrid EDM for drilling small deep holes, Int J Adv Manuf Technol. 95 (2018) 1465-1472.

DOI: 10.1007/s00170-017-1282-1

Google Scholar

[15] R. Nowicki, R. Świercz, D. Oniszczuk-Świercz, L. Dąbrowski, A. Kopytowski, Influence of machining parameters on surface texture and material removal rate of Inconel 718 after electrical discharge machining assisted with ultrasonic vibration, AIP Conference Proceedings. 2017 (2018) 020019.

DOI: 10.1063/1.5056282

Google Scholar

[16] Y.S. Liao, H.W. Liang, Study of vibration assisted inclined feed micro-EDM drilling, Procedia CIRP. 42 (2016) 552-556.

DOI: 10.1016/j.procir.2016.02.250

Google Scholar

[17] A.A. Gruzdev, Yu.A. Morgunov, B.P. Saushkin, Electrical discharge drilling of small diameter holes upon ultrasonic field application: Part 1. Results of Technological Experiments, Surface Engineering and Applied Electrochemistry. 56 (2) (2020) 166-170.

DOI: 10.3103/s1068375520020088

Google Scholar

[18] A.A. Gruzdev, Yu.A. Morgunov, B.P. Saushkin, Electrical discharge drilling of small diameter holes upon ultrasonic field application: Part 2. Technologies of multielectrode treatment of holes, Surface Engineering and Applied Electrochemistry. 56(5) (2020) 541-546.

DOI: 10.3103/s1068375520050051

Google Scholar

[19] A.A. Gruzdev, Yu.A. Morgunov, B.P. Saushkin, Tools for electrical-discharge hole drilling, in: Proceedings of the 4th International Conference on Industrial Engineering, 2019, pp.1467-1473.

DOI: 10.1007/978-3-319-95630-5_156

Google Scholar

[20] E.Yu. Rosina, Cavitation mode of sound capillary effect, Acousticnews. 6(1) (2003) 48-59.

Google Scholar

[21] Y.I. Kitaygorodsky, V.I. Koralova, Calculation of the height and speed of lifting by ca-pillaries under the influence of ultrasonic vibrations, Scientific Works of the Moscow Institute of Steel and Alloys. 90 (1977) 12-16.

Google Scholar

[22] P.P. Prokhorenko, et al., Ultrasonic Capillary Effect, Nauka i Tekhnika, Minsk, (1981).

Google Scholar

[23] E.G. Konovalov, D.L Kan, Theoretical studies of fluid flow in capillary at ultrasound application, Research of Academy of Science of Belorus. 4(18) (1974) 308-309.

Google Scholar

[24] B.D. Storey, A.J. Szeri, A reduced model of cavitation physics for use in sonochemistry, Proc. R. Soc. London, Ser. A. 457 (2001) 1685-1700.

DOI: 10.1098/rspa.2001.0784

Google Scholar

[25] A. Evans, A. Raff, S. Wiederhorn, K. Pryce (Eds.), Erosion, Mir, Moscow, (1982).

Google Scholar