[1]
B.S. Aliya, A. Mubarak, A. Khan, A.I. Mustafa, Modification of plywood surface with epoxy acrylate by photo-curing, Polymer-Plastics Technology and Engineering. 42(1) (2003) 123-138.
DOI: 10.1081/ppt-120016339
Google Scholar
[2]
S. Iwanaga, N. Tsuzuki, H. Kuboyama, Impact of the change in raw material supply on enterprise strategies of the Japanese plywood industry, Journal of Forest Research. 23(6) (2018) 325-335.
DOI: 10.1080/13416979.2018.1534048
Google Scholar
[3]
D. Blackburn, M. Vega, R. Yong, D. Britton, G. Nolan, Factors influencing the production of structural plywood in Tasmania, Australia from Eucalyptus nitens rotary peeled veneer, Southern Forests: a Journal of Forest Science. 80(4) (2018) 319-328.
DOI: 10.2989/20702620.2017.1420730
Google Scholar
[4]
I. Aydin, Activation of wood surfaces for glue bonds by mechanical pretreatment and its effects on some properties of veneer surfaces and plywood panels, Applied Surface Science. 233(1/4) (2004) 268-274.
DOI: 10.1016/j.apsusc.2004.03.230
Google Scholar
[5]
S. Boran, M. Usta, E. Gumukaya, Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin, Int. J. Adhes. Adhes. 31(7) (2011) 674-678.
DOI: 10.1016/j.ijadhadh.2011.06.011
Google Scholar
[6]
I. Aydin, G. Colakoglu, Formaldehyde emission, surface roughness, and some properties of plywood as function of veneer drying temperature, Drying Technology. 23 (2005) 1107-1117.
DOI: 10.1081/drt-200059142
Google Scholar
[7]
M. Dunky, Urea-formaldehyde (UF) adhesives resins for wood, Int. J. Adhes. Adhes. 18(2) (1998) 95-107.
DOI: 10.1016/s0143-7496(97)00054-7
Google Scholar
[8]
B.D. Park, Y.S. Kim, A.P. Singh, Reactivity, chemical structure, and molecular mobility of urea–formaldehyde adhesives synthesized under different conditions using FTIR and solid-state 13C CP/MAS NMR spectroscopy, J. Appl. Polym. Sci. 88 (2003) 2677-2687.
DOI: 10.1002/app.12115
Google Scholar
[9]
Y. Zhang, L. Ding, J. Gu, Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance. J. Carbohydr. Polym. 115 (2015) 32-57.
DOI: 10.1016/j.carbpol.2014.08.063
Google Scholar
[10]
A. Ghani, Z. Ashaari, P. Bawon, Reducing formaldehyde emission of urea formaldehyde-bonded particleboard by addition of amines as formaldehyde scavenger, Build Environ. 142 (2018) 188-194.
DOI: 10.1016/j.buildenv.2018.06.020
Google Scholar
[11]
A.B. Chubov, E.I. Matjushenkova, G.I. Tsarev, Rationale modes of oil heat treatment of plywood, J. News of the St. Petersburg forestry Academy. 194 (2011) 129-137.
Google Scholar
[12]
H. Khalida, Z. Ahmad, P.M. Tahir, Investigation on the water absorption characteristics of plywood manufactured using veneers from oil palm stem, Journal Teknologi. 78(5) (2016) 99-103.
DOI: 10.11113/jt.v78.8625
Google Scholar
[13]
A. Nuryawan, B.D. Park, A.P. Singh, Comparison of thermal curing behavior of liquid and solid urea–formaldehyde resins with different formaldehyde/urea mole ratios, J. Therm. Anal. Calorim. 118 (2014) 397-404.
DOI: 10.1007/s10973-014-3946-5
Google Scholar
[14]
B.D. Park, E.C. Kang, J. Park, Effects of formaldehyde to urea mole ratio on thermal curing behavior of urea-formaldehyde resin and properties of particleboard, J. Appl. Polym. Sci. 101(3) (2006) 1787-1792.
DOI: 10.1002/app.23538
Google Scholar
[15]
N.R. Galyavetdinov, R.R. Khasanshin, R.R. Safin, R.G. Safin, E.Y. Razumov, The usage of wood wastes in the manufacture of composite materials, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management SGEM, Bulgaria, 2015, pp.779-786.
DOI: 10.5593/sgem2015/b41/s18.101
Google Scholar
[16]
N. Costa, J. Pereira, J. Martins, Alternative to latent catalysts for curing UF resins used in the production of low formaldehyde emission wood-based panels, Int. J. Adhes. Adhes. 33 (2012) 56-60.
DOI: 10.1016/j.ijadhadh.2011.11.003
Google Scholar
[17]
S.B. Hosseini, M. Asadollahzadeh, S.K. Najfai, M.J. Taherzadeh, Partial replacement of urea-formaldehyde adhesive with fungal biomass and soy flour in plywood fabrication, Journal of Adhesion Science and Technology. 34(13) (2020) 1371-1384.
DOI: 10.1080/01694243.2019.1707948
Google Scholar
[18]
R.R. Safin, R.R. Khasanshin, S.R. Mukhametzyanov, Influence of technical parameters of disk-shaped reactor on productivity of heat treatment of crushed wood, IOP Conference Series: Materials Science and Engineering. 327(4) (2018) 042095.
DOI: 10.1088/1757-899x/327/4/042095
Google Scholar
[19]
N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, P. Bauchongkol, Effects of thermal treatment of rubberwood fibres on physical and mechanical properties of medium density fibreboard, J. Trop. For. Sci. 23(1) (2011) 10-16.
DOI: 10.1515/htmp.2011.038
Google Scholar
[20]
R.R. Safin, F.V. Nazipova, R.R. Khasanshin, A.E. Voronin, Pre-treatment of vegetable waste in the production of composite materials, Key Engineering Materials. 743 (2017) 53-57.
DOI: 10.4028/www.scientific.net/kem.743.53
Google Scholar
[21]
Kubovský, F. Kacik, I. Reinprecht, The impact of UV radiation on the change of colour and composition of the surface of lime wood treated with a CO2 laser, Journal of Photochemistry and Photobiology A: Chemistry. 322 (2016) 60-66.
DOI: 10.1016/j.jphotochem.2016.02.022
Google Scholar
[22]
L. Tolvaj; R. Nemeth, Z. Pasztory, L. Bejo, P. Takats, Colour stability of thermally modified wood during short-term photodegradation, Bio Resources. 9(4) (2014) 6644-6651.
DOI: 10.15376/biores.9.4.6644-6651
Google Scholar