[1]
D. Brough, H. Jouhara, The aluminium industry: a review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery, Intern. J. of Thermofluids. 1-2 (2020) 100007.
DOI: 10.1016/j.ijft.2019.100007
Google Scholar
[2]
L.M. Rojas-Díaz, L.E. Verano-Jiménez, E. Muñoz-García, J. Esguerra-Arce, A. Esguerra-Arce, Production and characterization of aluminium powder derived from mechanical saw chips and its processing through powder metallurgy, Powder Technology. 36 (2020) 301-311.
DOI: 10.1016/j.powtec.2019.10.028
Google Scholar
[3]
O.S. Nichiporenko, Production and consumption of aluminium powders (review), Powder Metallurgy and Metal Ceramics. 36 (1997) 438-445.
DOI: 10.1007/bf02676009
Google Scholar
[4]
N. Plakhotnikova, V.G. Gopienko, Production of aluminium-based gas-forming agents to make cellular concretes, Tsvetn. Met. 4-5 (1994) 42-45.
Google Scholar
[5]
J. Joys, R. Kasler, L.R. Thomas, Selecting atomized aluminium powders for the metal additive manufacturing process, Metal Additive Manufacturing. 2 (2016) 71-76.
Google Scholar
[6]
S. Narayan, A. Rajeshkannan, Workability behaviour of powder metallurgy aluminium composites, Journal of Powder Technology. (2014) 368721.
DOI: 10.1155/2014/368721
Google Scholar
[7]
J. Mascarenhas, Powder metallurgy: a major partner of the sustainable development, Materials Science Forum. 455-456 (2004) 857-860.
DOI: 10.4028/www.scientific.net/msf.455-456.857
Google Scholar
[8]
R.A. Latypov, E.V. Ageev, E.P. Novikov, Prepration and study of the properties of aluminium powders, suitable for the manufacture of powder electrodes, Key Engineering Materials. 839 (2020) 172-177.
DOI: 10.4028/www.scientific.net/kem.839.172
Google Scholar
[9]
A. Ilyushchanka, R.A. Kusin, I.N. Charniak, A.R. Kusin, Y.D. Manoilo, V.I. Semenov, Sprayed bronze and aluminium powders for restoring worn-out surfaces using gas-flame spraying, Machines. Technologies. Materials. 12 (2018) 517-519.
Google Scholar
[10]
B. Zhu, F. Li, Y. Sun, Q. Wang, Y. Wu, Z. Zhu, The effects of additives on the combustion characteristics of aluminium powder in steam, RSC Adv. 7 (2017) 5725-5732.
DOI: 10.1039/c6ra24911f
Google Scholar
[11]
N. Zolotorev, Y. Dubkova, A. Konovalenko, Influence of dispersion aluminium powder on the burning rate of mixed solid fuel, MATEC Web of Conferences. 194 (2018) 01065.
DOI: 10.1051/matecconf/201819401065
Google Scholar
[12]
V.G. Gopienko [et al.], Metal Powders of Aluminium, Magnesium, Titanium and Silicon. Consumer Properties and Areas of Application, Polytechnic University publishing house, St. Petersburg, (2012).
Google Scholar
[13]
G.S. Nayak, S.R. Nanda, K. Sethy, Aerated concrete: a revolutionary construction material, IJETSR. 5 (2018) 988-993.
Google Scholar
[14]
G.I. Grinfeld, A.A. Vishnevsky, A.S. Smirnova, Production of autoclaved aerated concrete in Russia in 2017, Construction Materials. 3 (2018) 62-64.
Google Scholar
[15]
S.V. Zmanovsky, A.S. Igumenschev, M.V. Kaftaeva, Aluminium gas generators with new properties, Universitetskaya Nauka. 2 (2016) 4-17.
Google Scholar
[16]
L. Galvankova, J. Masilco, T. Solny, E. Stepankova, Tobermorite synthesis under hydrothermal conditions, Procedia Engineering. 151 (2016) 100-107.
Google Scholar
[17]
V.G. Gopienko, B.R. Osipov, B.P. Nazarov, V.M. Ryumin, I.V. Volkov, N.I. Yasakov, Production and application of aluminium powders and fine powders, Metallurgy, Moscow, (1980).
Google Scholar
[18]
J. Thonstad, P. Fellner, G.M. Haarberg, J. Híveš, H. Kvande and A. Sterten, Aluminium Electrolysis: Fundamentals of the Hall-Héroult process, 3rd edition, Aluminium-Verlag, Düsseldorf, (2001).
Google Scholar
[19]
V. Mann, V. Buzunov, N. Pitertsev, V. Chesnyak, P. Polyakov, Reduction in power consumption at UC RUSAL's Smelters 2012–2014, Light Metals. (2015) 757-762.
DOI: 10.1002/9781119093435.ch128
Google Scholar
[20]
V.V. Pingin, Ya.A. Tretyakov, E.Yu. Radionov, N.V. Nemchinova, Modernization prospects for the bus arrangement of electrolyzer S-8BM (S-8B) (C-8BM (C-8B)), Tsvetnye metally. 3 (2016) 35-41.
DOI: 10.17580/tsm.2016.03.06
Google Scholar
[21]
A.A. Tyutrin, N.V. Nemchinova, A.A. Volodkina, Effects of electrolysis parameters on the technical and economic performance indicators of OA-300M baths, Proceedings of Irkutsk State Techn. Univ. 4 (2020) 906-918.
DOI: 10.21285/1814-3520-2020-4-906-918
Google Scholar
[22]
V.U. Bazhin, A.D. Smol'nikov, P.A. Petrov, Concept of energy efficiency aluminium production Electrolysis 600+,, Intern. Research Journal. 47 (2016) 37-40.
Google Scholar
[23]
E.Yu. Zenkin, A.A. Gavrilenko, N.V. Nemchinova, On RUSAL Bratsk JSC primary aluminium production waste recycling, Proceedings of Irkutsk State Techn. Univ. 21 (2017) 123-132.
DOI: 10.21285/1814-3520-2017-3-123-132
Google Scholar
[24]
A.N. Baranov, E.V. Timkina, A.A. Tyutrin, Research on leading fluorine from carbon-containing materials of aluminium production, Proceedings of Irkutsk State Techn. Univ. 7 (2017) 143-151.
DOI: 10.21285/1814-3520-2017-7-143-151
Google Scholar