[1]
M.A. Zorina, A.Y. Zhilyakov, M.S. Karabanalov, Crystallographic textures of strain and recrystallization in a superalloy of the Ni – Cr – Mo system, Met. Sci. and Heat Treatment. 62 (2020) 469-474.
DOI: 10.1007/s11041-020-00586-1
Google Scholar
[2]
A.A. Redikul'tsev, M.L. Lobanov, G.M. Rusakov, L.V. Lobanova, Secondary recrystallization in Fe-3% Si alloy with (110)[001] single-component texture, Phys. Met. and Metallogr. 114 (2013) 33-40.
DOI: 10.1134/s0031918x13010110
Google Scholar
[3]
M.A. Zorina, M.L. Lobanov, E.A. Makarova, G.M. Rusakov, Primary recrystallization texture in FCC-metal with low packing defect energy, Met. Sci. and Heat Treatment. 60 (2018) 329-336.
DOI: 10.1007/s11041-018-0280-8
Google Scholar
[4]
M.A. Zorina, M.S. Karabanalov, Y.N. Loginov, Surface texture of deformed copper wire, IOP Conf. Series: Mat. Sci. and Eng. 969(1) (2020) 012080.
DOI: 10.1088/1757-899x/969/1/012080
Google Scholar
[5]
J.W. Martin, R.D. Doherty, B. Cantor, Stability of Microstructure in Metallic Systems, second ed., Cambridge University Press in Cambridge, New York, (1997).
Google Scholar
[6]
V.I. Pastukhov, S.S. Khvostov, M.L. Lobanov, Effect of grain boundaries type on carbides precipitates in tempered martensite, Mat. Sci. Forum. 946 (2019) 368-373.
DOI: 10.4028/www.scientific.net/msf.946.368
Google Scholar
[7]
T. Maitland, S. Sitzman, Electron Backscatter Diffraction (EBSD) Technique and Materials Characterization Examples, Springer, Berlin, (2007).
Google Scholar
[8]
B.A. Khorashadizadeh, D. Raabe, S. Zaefferer, G.S. Rohrer, A.D. Rollett, M. Winning, Five-parameter grain boundary analysis by 3D EBSD of an ultra fine grained CuZr alloy processed by equal channel angular pressing, Adv. Eng. Mater. 13 (2011) 237-244.
DOI: 10.1002/adem.201000259
Google Scholar
[9]
S. Patala, J.K. Mason, K.A. Schuh, Improved representations of misorientation information for grain boundary science and engineering, Prog. Mater. Sci. 57 (2012) 1383-1425.
DOI: 10.1016/j.pmatsci.2012.04.002
Google Scholar
[10]
V.J. Araullo-Peters, B. Gault, S.L. Shrestha, L. Yao, M.P. Moody, S.P. Ringer, J.M. Cairney, Atom probe crystallography: Atomic-scale 3-D orientation mapping, Scripta Mater. 66 (2012) 907-910.
DOI: 10.1016/j.scriptamat.2012.02.022
Google Scholar
[11]
I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Coupling of electron channeling with EBSD: toward the quantitative characterization of deformation structures in the SEM, JOM-US. 65 (2013) 1229-1236.
DOI: 10.1007/s11837-013-0678-0
Google Scholar
[12]
S. Zaefferer, A critical review of orientation microscopy in SEM and TEM, Crystal Research and Technology. 46 (2011) 607-628.
DOI: 10.1002/crat.201100125
Google Scholar
[13]
P. Reznik, M. Zorina, M. Lobanov, Role of crystallographic misorientations in the evolution of texture in fcc metals, Materials Today: Proceedings. 19 (2019) 1875-1879.
DOI: 10.1016/j.matpr.2019.07.031
Google Scholar
[14]
S.D. Danilov, P.L. Reznik, M.A. Zorina, M.L. Lobanov, Effect of special boundaries on recrystallization texture of FCC metals with high packing defect energy, AIP Conf. Proc. 2174(1) (2019) 020207.
DOI: 10.1063/1.5134358
Google Scholar
[15]
N.Yu. Zolotarevskiy, E.V. Nesterova, A.S. Rubtsov, V.V. Rybin, High angle boundaries formed during phase transformations, Poverkhnost. Fizika, Khimiya, Mekhanika – Surface. Physics, Chemistry, Mechanics. 5 (1982) 30-35.
Google Scholar
[16]
M.L. Lobanov, G.M. Rusakov, A.A. Redikultsev, S.V. Belikov, M.S. Karabanalov, E.R. Struina, A.M. Gervas'ev, Research of special boundaries in lath martensite of low-carbon steel by orientation microscopy, Phys. Met. Metallogr. 117 (2016) 254-259.
DOI: 10.1134/s0031918x1603008x
Google Scholar
[17]
G.P. Grabovetskaya, I.P. Mishin, E.N. Stepanova, O.V. Zabudchenko, I.V. Ratochka, Effect of the structural and phase state on the deformation behavior and mechanical properties of the ultrafine-grained titanium alloy (Ti-Al-V-Mo) at temperatures in the range of 293–973 K, Mat. Sci. and Eng. A. 800 (2021) 140334.
DOI: 10.1016/j.msea.2020.140334
Google Scholar
[18]
S.L. Semiatin, An overview of the thermomechanical processing of α/β titanium alloys: current status and future research opportunities, Metall Mater. Trans. A. 51 (2020) 2593-2625.
DOI: 10.1007/s11661-020-05625-3
Google Scholar
[19]
S.I. Stepanov, A.G. Illarionov, S.L. Demakov, E.D. Stepanova, Effect of low temperature thermomechanical treatment on the phase composition and properties of a two-phase titanium alloy, AIP Conference Proceedings. 1785 (2016) 040084.
DOI: 10.1063/1.4967141
Google Scholar
[20]
V. Popov, A. Katz-Demyanetz, M. Bamberger, Heat transfer and phase formation through EBM 3D-printing of Ti-6Al-4V cylindrical parts, Defect and Diffusion Forum. 383 (2018) 190-195.
DOI: 10.4028/www.scientific.net/ddf.383.190
Google Scholar
[21]
V.V. Popov Jr., A. Katz-Demyanetz, A. Kovalevsky, R. Biletskiy, E. Strokin, A. Garkun, M. Bamberger, Effect of the hatching strategies on mechanical properties and microstructure of SEBM manufactured Ti-6Al-4V specimens, Letters on Materials. 8 (2018) 468-472.
DOI: 10.22226/2410-3535-2018-4-468-472
Google Scholar
[22]
Yu.R. Nemirovskiy, M.R. Nemirovskiy, Matrices of orientation relationships in course of phase transformations and twining, Zavodskaya Laboratoriya - Industrial Lab. 41 (1975) 1347-1353.
Google Scholar