The Spectrum of Crystallographic Misorientations of Intercrystalline Boundaries for BCC-HCP Phase Transformation in Additively Manufactured Ti-6Al-4V

Article Preview

Abstract:

Electron backscatter diffraction is a modern experimental method for local structure and texture investigation, which makes it possible to establish the presence and types of the various boundaries between the elements of the mesostructure such as low or high angle, special and interphase boundaries. Moreover, this technique can demonstrate the migration of boundaries during structural and phase transformations. This study estimated the possible spectrum of crystallographic misorientations of intercrystalline boundaries in additively manufactured titanium alloy Ti-6Al-4V using orientation microscopy and crystallographic calculations based on Burgers orientation relationship during β→α-transformation. The study has established that the boundaries between grains of α-phase are characterized by the misorientation angles of 11±2 °, 61±5 °, 89±3 °. The majority of high-angle boundaries are characterized by misorientation angles in the range of 57-65 °. The study also ascertained that the experimental spectrum of intercrystalline boundaries in the α-phase reveals the displacive nature of β→α-transformation in titanium alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

867-871

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Zorina, A.Y. Zhilyakov, M.S. Karabanalov, Crystallographic textures of strain and recrystallization in a superalloy of the Ni – Cr – Mo system, Met. Sci. and Heat Treatment. 62 (2020) 469-474.

DOI: 10.1007/s11041-020-00586-1

Google Scholar

[2] A.A. Redikul'tsev, M.L. Lobanov, G.M. Rusakov, L.V. Lobanova, Secondary recrystallization in Fe-3% Si alloy with (110)[001] single-component texture, Phys. Met. and Metallogr. 114 (2013) 33-40.

DOI: 10.1134/s0031918x13010110

Google Scholar

[3] M.A. Zorina, M.L. Lobanov, E.A. Makarova, G.M. Rusakov, Primary recrystallization texture in FCC-metal with low packing defect energy, Met. Sci. and Heat Treatment. 60 (2018) 329-336.

DOI: 10.1007/s11041-018-0280-8

Google Scholar

[4] M.A. Zorina, M.S. Karabanalov, Y.N. Loginov, Surface texture of deformed copper wire, IOP Conf. Series: Mat. Sci. and Eng. 969(1) (2020) 012080.

DOI: 10.1088/1757-899x/969/1/012080

Google Scholar

[5] J.W. Martin, R.D. Doherty, B. Cantor, Stability of Microstructure in Metallic Systems, second ed., Cambridge University Press in Cambridge, New York, (1997).

Google Scholar

[6] V.I. Pastukhov, S.S. Khvostov, M.L. Lobanov, Effect of grain boundaries type on carbides precipitates in tempered martensite, Mat. Sci. Forum. 946 (2019) 368-373.

DOI: 10.4028/www.scientific.net/msf.946.368

Google Scholar

[7] T. Maitland, S. Sitzman, Electron Backscatter Diffraction (EBSD) Technique and Materials Characterization Examples, Springer, Berlin, (2007).

Google Scholar

[8] B.A. Khorashadizadeh, D. Raabe, S. Zaefferer, G.S. Rohrer, A.D. Rollett, M. Winning, Five-parameter grain boundary analysis by 3D EBSD of an ultra fine grained CuZr alloy processed by equal channel angular pressing, Adv. Eng. Mater. 13 (2011) 237-244.

DOI: 10.1002/adem.201000259

Google Scholar

[9] S. Patala, J.K. Mason, K.A. Schuh, Improved representations of misorientation information for grain boundary science and engineering, Prog. Mater. Sci. 57 (2012) 1383-1425.

DOI: 10.1016/j.pmatsci.2012.04.002

Google Scholar

[10] V.J. Araullo-Peters, B. Gault, S.L. Shrestha, L. Yao, M.P. Moody, S.P. Ringer, J.M. Cairney, Atom probe crystallography: Atomic-scale 3-D orientation mapping, Scripta Mater. 66 (2012) 907-910.

DOI: 10.1016/j.scriptamat.2012.02.022

Google Scholar

[11] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Coupling of electron channeling with EBSD: toward the quantitative characterization of deformation structures in the SEM, JOM-US. 65 (2013) 1229-1236.

DOI: 10.1007/s11837-013-0678-0

Google Scholar

[12] S. Zaefferer, A critical review of orientation microscopy in SEM and TEM, Crystal Research and Technology. 46 (2011) 607-628.

DOI: 10.1002/crat.201100125

Google Scholar

[13] P. Reznik, M. Zorina, M. Lobanov, Role of crystallographic misorientations in the evolution of texture in fcc metals, Materials Today: Proceedings. 19 (2019) 1875-1879.

DOI: 10.1016/j.matpr.2019.07.031

Google Scholar

[14] S.D. Danilov, P.L. Reznik, M.A. Zorina, M.L. Lobanov, Effect of special boundaries on recrystallization texture of FCC metals with high packing defect energy, AIP Conf. Proc. 2174(1) (2019) 020207.

DOI: 10.1063/1.5134358

Google Scholar

[15] N.Yu. Zolotarevskiy, E.V. Nesterova, A.S. Rubtsov, V.V. Rybin, High angle boundaries formed during phase transformations, Poverkhnost. Fizika, Khimiya, Mekhanika – Surface. Physics, Chemistry, Mechanics. 5 (1982) 30-35.

Google Scholar

[16] M.L. Lobanov, G.M. Rusakov, A.A. Redikultsev, S.V. Belikov, M.S. Karabanalov, E.R. Struina, A.M. Gervas'ev, Research of special boundaries in lath martensite of low-carbon steel by orientation microscopy, Phys. Met. Metallogr. 117 (2016) 254-259.

DOI: 10.1134/s0031918x1603008x

Google Scholar

[17] G.P. Grabovetskaya, I.P. Mishin, E.N. Stepanova, O.V. Zabudchenko, I.V. Ratochka, Effect of the structural and phase state on the deformation behavior and mechanical properties of the ultrafine-grained titanium alloy (Ti-Al-V-Mo) at temperatures in the range of 293–973 K, Mat. Sci. and Eng. A. 800 (2021) 140334.

DOI: 10.1016/j.msea.2020.140334

Google Scholar

[18] S.L. Semiatin, An overview of the thermomechanical processing of α/β titanium alloys: current status and future research opportunities, Metall Mater. Trans. A. 51 (2020) 2593-2625.

DOI: 10.1007/s11661-020-05625-3

Google Scholar

[19] S.I. Stepanov, A.G. Illarionov, S.L. Demakov, E.D. Stepanova, Effect of low temperature thermomechanical treatment on the phase composition and properties of a two-phase titanium alloy, AIP Conference Proceedings. 1785 (2016) 040084.

DOI: 10.1063/1.4967141

Google Scholar

[20] V. Popov, A. Katz-Demyanetz, M. Bamberger, Heat transfer and phase formation through EBM 3D-printing of Ti-6Al-4V cylindrical parts, Defect and Diffusion Forum. 383 (2018) 190-195.

DOI: 10.4028/www.scientific.net/ddf.383.190

Google Scholar

[21] V.V. Popov Jr., A. Katz-Demyanetz, A. Kovalevsky, R. Biletskiy, E. Strokin, A. Garkun, M. Bamberger, Effect of the hatching strategies on mechanical properties and microstructure of SEBM manufactured Ti-6Al-4V specimens, Letters on Materials. 8 (2018) 468-472.

DOI: 10.22226/2410-3535-2018-4-468-472

Google Scholar

[22] Yu.R. Nemirovskiy, M.R. Nemirovskiy, Matrices of orientation relationships in course of phase transformations and twining, Zavodskaya Laboratoriya - Industrial Lab. 41 (1975) 1347-1353.

Google Scholar