[1]
A.E.M. Khater, H.A.I. Al-Sewaidan, A.S. Al-Saif, H. Diab, Effects of soil properties on natural radionuclides concentration in arid environment: a case study, International conference on Radioecology and Environmental Radioactivity. Bergen, Norway, (2008).
Google Scholar
[2]
H. Philipp, About the test accuracy of soil parameters determined in the laboratory, Geotechnik 14(4) (1991) 184-189.
Google Scholar
[3]
S. Kiran, B. Lal, Modelling of soil shear strength using neural network approach, Electron. J. Geotech. Eng. 21(10) (2016) 3751–3771.
Google Scholar
[4]
U. Kramer, V. Rizkallah, Experiences with the Determination of Shear Parameters in the Shear Box Device. Mitteilungen Lehrstuhl für Grundbau, Bodenmechanik und Energiewasserbau und Institute für Grundbau undBodenmechanik der TU Hannover, Heft 10. Eigenverlag, Hannover, Germany, (1976).
Google Scholar
[5]
S. Shibuya, T. Mitachi, S. Tamate, Interpretation of direct shear box testing of sands as quasi-simple shear, Geotechnique 47(4) (1997) 769-790.
DOI: 10.1680/geot.1997.47.4.769
Google Scholar
[6]
R. Jain, P.K. Jain, S.S. Bhadauria, Prediction model for soil strength parameters, Int. J. Eng. Res. Technol. 3(3) (2010) 207-225.
Google Scholar
[7]
A. Besalatpour, M.A. Hajabbasi, S. Ayoubi, M. Afyuni, A. Jalalian, R. Schulin, Soil shear strength prediction using intelligent systems: artificial neural networks and an adaptive neuro-fuzzy inference system, Soil Sci. Plant Nutr. 58(2) (2012) 149-160.
DOI: 10.1080/00380768.2012.661078
Google Scholar
[8]
S. Kiran, B. Lal, S.S. Tripathy, Shear strength prediction of soil based on probabilistic neural network, Indian J. Sci. Technol. 9(41) (2016).
DOI: 10.17485/ijst/2016/v9i41/99188
Google Scholar
[9]
S. Iyeke, E. Eze, J. Ehiorobo, S. Osuji, Estimation of Shear Strength Parameters of Lateritic Soils Using Artificial Neural Network, Niger. J. Technol. 35(2) (2016) 260.
DOI: 10.4314/njt.v35i2.5
Google Scholar
[10]
A. Tenpe, S. Kaur, Artificial Neural Network Modeling for Predicting Compaction Parameters based on Index Properties of Soil, Int. J. Sci. Res. 4(7) (2015) 1198–1202.
Google Scholar
[11]
F. Farrokhzad, Prediction of Slope Stability Using Artificial Neural Network (Case Study: Noabad, Mazandaran, Iran), (2008).
DOI: 10.1007/s12517-009-0035-3
Google Scholar
[12]
M.A. Shahin, M.B. Jaksa, H.R. Maier, Artificial Neural Network Based Settlement Prediction Formula for Shallow Foundations on Granular Soils, Aust. Geomech. 37(4) (2002) 45–52.
Google Scholar
[13]
F. David, A Gentle Introduction to Neural Networks Series - Part 1. Retrieved from https://towardsdatascience.com/a-gentle-introduction-to-neural-networksseries-part-1 2b90b87795bc (2017).
Google Scholar
[14]
I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application, J. Microbiol. Methods 43(1) (2000) 3-31.
DOI: 10.1016/s0167-7012(00)00201-3
Google Scholar
[15]
S. Al-Hamed, M. Wahby, A. Aboukarima, Artificial neural network for soil cohesion and soil internal friction angle prediction from soil physical properties data, IRJAS 4(5) (2014) 85-94.
Google Scholar
[16]
A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks: A tutorial, Computer 3 (1996) 31-44.
DOI: 10.1109/2.485891
Google Scholar
[17]
T. Shah, About Train, Validation and Test Sets in Machine Learning. Retrieved from https://towardsdatascience.com/train-validation-and-testsets-72cb40cba9e7 (2017).
Google Scholar
[18]
L. Bungaro, L. Bungaro, How to Evaluate your Machine Learning Model. Retrieved from https://medium.com/coinmonks/debugging-a-learningalgorithm-ef7c16936864 (2018).
Google Scholar
[19]
T.W. Edgar, D.O. Manz, Research methods for cyber security. Syngress, (2017).
Google Scholar
[20]
K. Bláhová, L. Ševelová, P. Pilařová, Influence of water content on the shear strength parameters of clayey soil in relation to stability analysis of a hillside in Brno region, Acta Univ. Agric. Silvic. Mendel. Brun. 61(6) (2013) 1583-1588.
DOI: 10.11118/actaun201361061583
Google Scholar
[21]
B.M. Das, Advanced soil mechanics. CRC Press. Florida, USA, (2013).
Google Scholar
[22]
A. Casagrande, Notes on the design of the liquid limit device, Geotechnique 8(2) (1958) 84-91.
Google Scholar
[23]
S.K. Haigh, P.J. Vardanega, M.D. Bolton, The plastic limit of clays, Géotechnique 63(6) (2013) 435.
DOI: 10.1680/geot.11.p.123
Google Scholar
[24]
E. Polidori, Relationship between the Atterberg limits and clay content, Soils and foundations 47(5) (2007) 887-896.
DOI: 10.3208/sandf.47.887
Google Scholar
[25]
T.D. Stark, H.T. Eid, Drained residual strength of cohesive soils, J. Geotech. Eng. 120(5) (1994) 856-871.
DOI: 10.1061/(asce)0733-9410(1994)120:5(856)
Google Scholar
[26]
S. Nakamura, S. Gibo, K. Egashira, S. Kimura, Platy layer silicate minerals for controlling residual strength in landslide soils of different origins and geology, Geology 38(8) (2010) 743-746.
DOI: 10.1130/g30908.1
Google Scholar
[27]
T.E. Tika, P.R. Vaughan, L.J.L.J. Lemos, Fast shearing of pre-existing shear zones in soil, Geotechnique 46(2) (1996) 197-233.
DOI: 10.1680/geot.1996.46.2.197
Google Scholar
[28]
C.D. Maio, G.B. Fenellif, Residual strength of kaolin and bentonite: the influence of their constituent pore fluid, Geotechnique 44(2) (1994) 217-226.
DOI: 10.1680/geot.1994.44.2.217
Google Scholar
[29]
A.W. Skempton, R.D. Northey, The sensitivity of clays. GeÂotechnique 2(1) (1952) 30-53.
Google Scholar
[30]
B. Kuriakose, B.M. Abraham, A. Sridharan, B.T. Jose, Water content ratio: an effective substitute for liquidity index for prediction of shear strength of clays, Geotech. Geol. Eng. 35(4) (2017) 1577-1586.
DOI: 10.1007/s10706-017-0193-0
Google Scholar