[1]
U. Gayathri, B.R. Venkatraman, S. Arivoli, T. Nadu, Removal of Copper ( II ) Ions from Aqueous Solutions by Adsorption with Low Cost Acid Activated Cynodon Dactylon Carbon, E-J. Chem. 8 (2011).
DOI: 10.1155/2011/435482
Google Scholar
[2]
C.G. Lee, S. Lee, J.A. Park, C. Park, S.J. Lee, S.B. Kim, B. An, S.T. Yun, S.H. Lee, J.W. Choi, Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam, Chemosphere 166 (2017) 203–211.
DOI: 10.1016/j.chemosphere.2016.09.093
Google Scholar
[3]
Y.B. Onundi, A.A. Mamun, M.F. Al Khatib, Y.M. Ahmed, Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon 7 (2010) 751–752.
DOI: 10.1007/bf03326184
Google Scholar
[4]
N. Beyazit, Copper(II), chromium(VI) and nickel(II) removal from metal plating effluent by electrocoagulation, Int. J. Electrochem. Sci. 9 (2014) 4315–4330.
Google Scholar
[5]
T.M. Rekha, B. Vinod, K.V.R. Murthy, Removal of Heavy Metals From Electroplating Industry By Electrocoagulation. J. Chem. Pharm. Res. ISSN (2014) 111-118.
Google Scholar
[6]
I. Anastopoulos, M. Karamesouti, A.C. Mitropoulos, G.Z. Kyzas, A review for coffee adsorbents, J. Mol. Liq. 229 (2017) 555–565.
DOI: 10.1016/j.molliq.2016.12.096
Google Scholar
[7]
A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, (Eds.) Adsorption Processes for Water Treatment and Purification. Springer International Publishing, Cham, (2017).
DOI: 10.1007/978-3-319-58136-1
Google Scholar
[8]
M.A. Hossain, H.H. Ngo, W.S. Guo, T.V. Nguyen, S. Vigneswaran, Performance of cabbage and cauliflower wastes for heavy metals removal, Desalin, Water Treat. 52 (2014) 844–860.
DOI: 10.1080/19443994.2013.826322
Google Scholar
[9]
M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite, Energy Procedia 50 (2014) 113–120.
DOI: 10.1016/j.egypro.2014.06.014
Google Scholar
[10]
J. Ma, Y. Liu, O. Ali, Y. Wei, S. Zhang, Y. Zhang, T. Cai, C. Liu, S. Luo, Fast adsorption of heavy metal ions by waste cotton fabrics based double network hydrogel and influencing factors insight. J. Hazard. Mater. 344 (2018) 1034–1042.
DOI: 10.1016/j.jhazmat.2017.11.041
Google Scholar
[11]
M.T. Amin, A.A. Alazba, M. Shafiq, Application of biochar derived from date palm biomass for removal of lead and copper ions in a batch reactor: Kinetics and isotherm scrutiny, Chem. Phys. Lett. 722 (2019) 64–73.
DOI: 10.1016/j.cplett.2019.02.018
Google Scholar
[12]
J. Li, J. Dai, G. Liu, H. Zhang, Z. Gao, J. Fu, Y. He, Y. Huang, Biochar from microwave pyrolysis of biomass: A review, Biomass Bioenerg. 94 (2016) 228–244.
DOI: 10.1016/j.biombioe.2016.09.010
Google Scholar
[13]
O.S. Amuda, A.A. Giwa, I.A. Bello, Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon, 36 (2007a) 174–181.
DOI: 10.1016/j.bej.2007.02.013
Google Scholar
[14]
H. Che bt Man, C.O. Akinbile, C. Xun Jun, Coconut Husk Adsorbent for the Removal of Methylene Blue Dye from Wastewater, BioResources 10 (2015) 2859–2872.
DOI: 10.15376/biores.10.2.2859-2872
Google Scholar
[15]
C. Song, S. Wu, M. Cheng, P. Tao, M. Shao, G. Gao, Adsorption Studies of Coconut Shell Carbons Prepared by KOH Activation for Removal of Lead(II) From Aqueous Solutions, Sustainability 6 (2013) 86–98.
DOI: 10.3390/su6010086
Google Scholar
[16]
F.T. Ademiluyi, E.O. David-West, Effect of Chemical Activation on the Adsorption of Heavy Metals Using Activated Carbons from Waste Materials, ISRN Chemical Engineering 1–5, (2012).
DOI: 10.5402/2012/674209
Google Scholar
[17]
S. Ayub, F. Changani, Adsorption Process for Wastewater Treatment By Using Coconut Shell 15, (2014).
Google Scholar
[18]
R. Wahi, H. Senghie, The Use of Microwave Derived Activated Carbon for Removal of Heavy Metal in Aqueous Solution. Journal of Science and Technology 3 (2011) 97–108.
Google Scholar
[19]
D. Ozturk, T. Sahan, Design and Optimization of Cu (II) Adsorption Conditions from Aqueous Solutions by Low-Cost Adsorbent Pumice with Response Surface Methodology, 24 (2015) 1749–1756.
DOI: 10.15244/pjoes/40270
Google Scholar
[20]
R. Wahi, Z. Ngaini, V.U. Jok, Removal of Mercury, Lead and Copper from Aqueous Solution by Activated Carbon of Palm Oil Empty Fruit Bunch, Adsorption. 5 (2009b) 84–91.
Google Scholar
[21]
R. Malik, D.S. Ramteke, S.R. Wate, Physico-chemical and surface characterization of adsorbent prepared from groundnut shell by ZnCl2activation and its ability to adsorb colour, Indian J. Chem. Techn. 13 (2006) 319–328.
Google Scholar
[22]
M.M. Rahman, Preparation and Modification of Activated Carbon From Oil-palm Shell and its Adsorption Capacity Through Speciation of Chromium, Res. J. Chem. Environ. 15 (2011): 49-51.
Google Scholar
[23]
R. Wahi, Z. Ngaini, V. Jok, Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch, World Appl. Sci. J. 5 (2009a) 84–91.
Google Scholar
[24]
W.M.F.W. Mahmood, M.A. Ariffin, Z. Harun, J.A. Ghani, Characterisation and Potential Use of, (2015) 45–54.
Google Scholar
[25]
M. Zhao, Y. Dai, M. Zhang, C. Feng, B. Qin, W. Zhang, N. Zhao, Y. Li, Z. Ni, Z. Xu, D.C.W. Tsang, R. Qiu, Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies, Sci. Total. Environ. 717 (2020) 136894.
DOI: 10.1016/j.scitotenv.2020.136894
Google Scholar
[26]
A. Eliescu, A.A. Georgescu, C.M. Nicolescu, M. Bumbac, N. Cioateră, M. Mureșeanu, L.C. Buruleanu, Biosorption of Pb(II) from Aqueous Solution Using Mushroom (Pleurotus ostreatus) Biomass and Spent Mushroom Substrate, Anal. Lett. 53 (2020) 2292–2319.
DOI: 10.1080/00032719.2020.1740722
Google Scholar
[27]
N. Bagheri, J. Abedi, Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide, Chem. Eng. Res. Des. 87 (2009) 1059–1064.
DOI: 10.1016/j.cherd.2009.02.001
Google Scholar
[28]
A.R. Hidayu, N. Muda, Preparation and Characterization of Impregnated Activated Carbon from Palm Kernel Shell and Coconut Shell for CO2 Capture, Procedia Eng. 148 (2016) 106–113.
DOI: 10.1016/j.proeng.2016.06.463
Google Scholar
[29]
S.E. Abechi, C. E. Gimba, A. Uzairu, Y. A. Dallatu, Preparation and Characterization of Activated Carbon from Palm Kernel Shell by Chemical Activation, Res. J. chem. sci. 3 (2013) 54–61.
Google Scholar
[30]
O.S. Amuda, A.A. Giwa, I.A. Bello, Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon, Biochem. Eng. J. 36 (2007b) 174–181.
DOI: 10.1016/j.bej.2007.02.013
Google Scholar
[31]
A. Khokhar, Z. Siddique, Removal of heavy metal ions by chemically treated Melia azedarach L. leaves. J. Environ. Chem. Eng. 3 (2015) 944–952.
DOI: 10.1016/j.jece.2015.03.009
Google Scholar
[32]
A.O, D. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn 2+ Unto Phosphoric Acid Modified Rice Husk, IOSRJAC 3 (2012) 38–45.
DOI: 10.9790/5736-0313845
Google Scholar
[33]
S. Lagergren, About the Theory of So-Called Adsorption of Soluble Substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24 (1898) 1-39.
Google Scholar
[34]
G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res. 18 (1984) 1501-1507.
DOI: 10.1016/0043-1354(84)90124-6
Google Scholar
[35]
M. Musah, Kinetic Study of the Adsorption of Pb2+ and Cr3+ ions on Palm Kernel Shell Activated Carbon, (2011).
Google Scholar
[36]
S. Zhang, Z. Wang, Y. Zhang, H. Pan, L. Tao, Adsorption of Methylene Blue on Organosolv Lignin from Rice Straw, Procedia Environ. Sci. 31 (2016) 3–11.
DOI: 10.1016/j.proenv.2016.02.001
Google Scholar
[37]
E. Bernard, A. Jimoh, J.O. Odigure, Heavy Metals Removal from Industrial Wastewater by Activated Carbon Prepared from Coconut Shell, Res. J. Chem. Sci. 3 (2013) 3–9.
Google Scholar
[38]
M.B. Amar, K. Walha, V. Salvadó, Evaluation of Olive Stones for Cd(II), Cu(II), Pb(II) and Cr(VI) Biosorption from Aqueous Solution: Equilibrium and Kinetics, Int. J. Environ. Res. 14 (2020) 193–204.
DOI: 10.1007/s41742-020-00246-5
Google Scholar
[39]
M. Abdić, E. Memić, J. Šabanović, S. Sulejmanović, Begić, Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: tangerine peel, Int. J. Environ. Sci. Te. 15 (2018): 2511-2518.
DOI: 10.1007/s13762-018-1645-7
Google Scholar
[40]
X. Tao, Y. Wu, L. Cha, Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (VI) and methyl orange, Environ. Sci. Pollut. 26 (2019) 19828–19842.
DOI: 10.1007/s11356-019-05322-8
Google Scholar
[41]
S.S. Al Moharbi, M.G. Devi, B. M. Sangeetha, S. Jahan, Studies on the removal of copper ions from industrial effluent by Azadirachta indica powder, Applied Water Science 10, (2020).
DOI: 10.1007/s13201-019-1100-z
Google Scholar
[42]
E.A. Abdel-Galil, H.E. Rizk, A.Z. Mostafa, Production and characterization of activated carbon from Leucaena plant wastes for removal of some toxic metal ions from waste solutions, Desalin. Water. Treat. 57 (2016) 17880–17891.
DOI: 10.1080/19443994.2015.1102768
Google Scholar
[43]
E. Aboli, D. Jafari, H. Esmaeili, Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves, Carbon Lett. 30 (2020) 683–698.
DOI: 10.1007/s42823-020-00141-1
Google Scholar