[1]
T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors, Sensors 9 (2009) 6504-6529.
DOI: 10.3390/s90806504
Google Scholar
[2]
J. N. Tiwari, R. N. Tiwari, K. S. Kim, Zero-dimensional, one-dimensional, two-dimensional, and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater. Sci. 57 (2012) 724-803.
DOI: 10.1016/j.pmatsci.2011.08.003
Google Scholar
[3]
R. S. Devan, R. A. Patil, J.-H. Lin, Y.-R. Ma, One-Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications, Adv. Funct. Mater. 22 (2012) 3326-3370.
DOI: 10.1002/adfm.201201008
Google Scholar
[4]
L. Xu, X. Li, Z. Zhan, L. Wang, S. Feng, X. Chai, W. Lu, J. Shen, Z. Weng, J. Sun, Catalyst-Free, Selective Growth of ZnO Nanowires on SiO2 by Chemical Vapor Deposition for Transfer-Free Fabrication of UV Photodetectors, ACS Appl. Mater. Interfaces 7 (2015) 20264.
DOI: 10.1021/acsami.5b05811
Google Scholar
[5]
S. K. Panda, A. N. Singh, A. S. Pal, A. C. Jacob, Thickness dependent growth of needle-like and flower-like ZnO nanostructures, J Mater Sci Mater Electron 20 (2009) 771-775.
DOI: 10.1007/s10854-008-9800-4
Google Scholar
[6]
Z. Yuan, Low-temperature growth of well-aligned ZnO nanowire arrays by chemical bath deposition for hybrid solar cell application, Mater Sci Mater Electron 25 (2014) 2248-2252.
DOI: 10.1007/s10854-014-1866-6
Google Scholar
[7]
H. K. Park, M. H. Oh, S. W. Kim, G. H. Kim, D. H. Youn, S. Lee, S. H. Kim, K. C. Kim, S. L. Maeng, Vertically Well-Aligned ZnO Nanowires on cAl2O3 and GaN Substrates by Au Catalyst, ETRI J. 28 (2006) 787-789.
DOI: 10.4218/etrij.06.0206.0138
Google Scholar
[8]
T. LI, SU & Zhang, Xiaozhong & Yan, Bin & Yu, Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method, Nanotechnology (2009).
DOI: 10.1088/0957-4484/20/49/495604
Google Scholar
[9]
U. Schubert, N. Husing, Synthesis of Inorganic Materials, Wiley-VCH Verlag GmbH & Co., Weinheim, (2019).
Google Scholar
[10]
X. San, G. Wang, B. Liang, Y. Song, S. Gao, J. Zhang, F. Catalyst-free growth of one-dimensional ZnO nanostructures on SiO2 substrate and in situ investigation of their H2 sensing properties, Meng, J. Alloys Compd. 622 (2015) 73.
DOI: 10.1016/j.jallcom.2014.09.224
Google Scholar
[11]
A. Umar, S. H. Kim, J. H. Kim, A. Al-Hajry, Y. B. Hahn, Temperature-dependant non-catalytic growth of ultraviolet-emitting ZnO nanostructures on silicon substrate by thermal evaporation process, J. Alloys Compd. 463 (2008) 516-521.
DOI: 10.1016/j.jallcom.2007.09.065
Google Scholar
[12]
I. Udom, M. K. Ram, E. K. Stefanakos, A. F. Hepp, D. Y. Goswami, One dimensional-ZnO nanostructures: synthesis, properties and environmental applications, Mater. Sci. Semicond. Process. 16 (2013) 2070-2083.
DOI: 10.1016/j.mssp.2013.06.017
Google Scholar
[13]
H. Zhuang, J. Wang, H. Liu, J. Li, P. Xu, Structural and Optical Properties of ZnO Nanowires Doped with Magnesium, Acta Phys. Pol. A 119 (2011) 819.
DOI: 10.12693/aphyspola.119.819
Google Scholar
[14]
R. Yousefi, B. Kamaluddin, Dependence of photoluminescence peaks and ZnO nanowires diameter grown on silicon substrates at different temperatures and orientations, J. Alloys Compd. 479 (2009) L11-L14.
DOI: 10.1016/j.jallcom.2008.12.147
Google Scholar
[15]
Y. M. Zhao, Y. H. Li, Y. Z. Jin, X. P. Zhang, W. B. Hu, I. Ahmad, G. McCartney, Y. Q. Zhu, Growth and characterization of Cu-catalyzed ZnO nanowires, J. Phys. Conf. Ser. 61 (2007) 703-707.
DOI: 10.1088/1742-6596/61/1/141
Google Scholar
[16]
A. Samavati, Z. Othaman, S. K. Ghoshal, M. R. Dousti, Optical and structural investigations of self-assembled Ge/Si bi-layer containing Ge QDs, J. Lumin. 154 (2014) 51-57.
DOI: 10.1016/j.jlumin.2014.04.003
Google Scholar
[17]
F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors, J. Mater. Chem. C 3 (2015) 10715-10722.
DOI: 10.1039/c5tc02043c
Google Scholar
[18]
T. Steiner, Ed. , Semiconductor Nanostructures for Optoelectronics Applications, Artech House, Inc, Boston, (2004).
Google Scholar
[19]
G. Kenanakis, D. Vernardou, N. Katsarakis, Light-induced self-cleaning properties of ZnO nanowires grown at low temperatures, Appl. Catal. A Gen. 7 (2012) 411–412.
DOI: 10.1016/j.apcata.2011.09.041
Google Scholar
[20]
H. A. Wahab, A. A. Salama, A. A. El-Saeid, O. Nur, M. Willander, I. K. Battisha, Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique, Results Phys. 3 (2013) 46-51.
DOI: 10.1016/j.rinp.2013.01.005
Google Scholar
[21]
C.-H. Liu, X. Yu, Silver Nanowire-Based Transparent, Flexible, and Conductive Thin Film, Nano Rxpress (2011).
Google Scholar
[22]
T. Dorji, S. Sakrani, S. Suhaimi, Structural Properties of Aluminum Doped Zinc Oxide Nanowires 4th ICOWOBAS-RAFSS (2013).
Google Scholar
[23]
S. Y. Li, P. Lin, C. Y. Lee, T. Y. Tseng, Effect of atmosphere on growth of single crystal zinc oxide nanowires, J. Mater. Sci. Mater. Electron. 15 (2004) 505-510.
DOI: 10.1023/b:jmse.0000032584.87349.22
Google Scholar