The Marangoni Convection Effect on Melt Pool Formation during Selective Laser Melting Process

Article Preview

Abstract:

In order to predict the effect of the Marangoni convection and the morphology of melted stainless steel powder, during the selective laser melting (SLM) process, a transient three-dimensional numerical model is developed at the mesoscale. The evolution of the temperature and velocity fields’ is then studied. The initial powder bed distribution is obtained by the discrete element method (DEM) calculation, and the temperature distribution and the molten pool shape deformation are calculated and analyzed by the Ansys-Fluent commercial code. The molten pool shape is obtained by considering the influence of Marangoni convection on the internal flow behavior. The recoil force was not considered in our calculation. As main results, a slight deviation between the position of the maximum temperature of the molten pool and the center of the laser spot is observed. The direction of the heat diffusion is more likely to be horizontal and the flow centrifugal, which causes the melt track to be wide. Finally, the Marangoni convection is the main driver of the flow.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-114

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Caffrey, I. Campbell, T. Wohlers, Wohlers Report 2016-3D Printing and Additive Manufacturing State of the Industry. Annual Worldwide Progress Report, Wohlers Associates, Fort Collins, (2016).

Google Scholar

[2] L.E. Loh, C.K. Chua, W.Y. Yeong, J. Song, M. Mapar, S.L. Sing, Z.H. Liu, D.Q. Zhang, Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061,, Int. J. Heat Mass Transf. 80, 288–300 (2015).

DOI: 10.1016/j.ijheatmasstransfer.2014.09.014

Google Scholar

[3] J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw, B. Van Hooreweder, On the influence of laser defocusing in Selective Laser Melting of 316L,, Addit. Manuf. 23 161–169 (2018).

DOI: 10.1016/j.addma.2018.08.006

Google Scholar

[4] K. Kempen, Expanding the Materials Palette for Selective Laser Melting of Metals, KU Leuven, Belgium, (2015).

Google Scholar

[5] L. Wang, Q. Wei, Y. Shi, J. Liu, W. He, Experimental investigation into the singletrack of Selective Laser Melting of IN625, Adv. Mater. Res. 233-235, 2844–2848. (2011).

DOI: 10.4028/www.scientific.net/amr.233-235.2844

Google Scholar

[6] T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, and X. Zeng, Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode,, Mater. Design 135; 257–266 (2017).

DOI: 10.1016/j.matdes.2017.09.014

Google Scholar

[7] W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol. 214, 2915–2925. (2014).

DOI: 10.1016/j.jmatprotec.2014.06.005

Google Scholar

[8] S.A. Khaillarah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater. 108, 36–45. (2016).

DOI: 10.1016/j.actamat.2016.02.014

Google Scholar

[9] Panwisawas, C. et al. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scripta Materialia 105, 14–17 (2015).

DOI: 10.1016/j.scriptamat.2015.04.016

Google Scholar

[10] M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Addit. Manuf. 14, 39–48. (2017).

DOI: 10.1016/j.addma.2016.12.001

Google Scholar

[11] M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, Denudation of metal powder layers in laser powder bed fusion processes, Acta Mater. 114, 33–42. (2016).

DOI: 10.1016/j.actamat.2016.05.017

Google Scholar

[12] M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, Denudation of metal powder layers in laser powder bed fusion processes, Acta Mater. 114, 33–42 (2016).

DOI: 10.1016/j.actamat.2016.05.017

Google Scholar

[13] X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, Z. Shen, Textures formed in a CoCrMo alloy by selective laser melting, J. Alloys Compd. 631 ,153–164. (2015).

DOI: 10.1016/j.jallcom.2015.01.096

Google Scholar

[14] N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, and C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting,, Addit. Manuf. 1, 77–86 (2014).

DOI: 10.1016/j.addma.2014.08.001

Google Scholar

[15] A. Yadollahi, N. Shamsaei, S.M. Thompson, D.W. Seely, Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel, Materials Science and Engineering: A. 644 , 171–183. (2015).

DOI: 10.1016/j.msea.2015.07.056

Google Scholar

[16] K. Antony, N. Arivazhagan, K. Senthilkumaran, Numerical and experimental investigations on laser melting of stainless steel 316L metal powders,, J. Manuf. Process. 16 (3), 345–355 (2014).

DOI: 10.1016/j.jmapro.2014.04.001

Google Scholar

[17] S. Mohanty, J. Hattel, Cellular scanning strategy for selective laser melting: Capturing thermal trends with a low-fidelity, pseudo-analytical model,, Math. Probl. Eng., ID 715058 (2014).

DOI: 10.1155/2014/715058

Google Scholar

[18] T. Heeling, M. Cloots, K. Wegener, Melt pool simulation for the evaluation of process parameters in selective laser melting,, Addit. Manuf. 14, 116– 125 (2017).

DOI: 10.1016/j.addma.2017.02.003

Google Scholar

[19] S. Mohanty, J.H. Hattel, Numerical model based reliability estimation of selective laser melting process,, Phys. Proc. 56, 379–389 (2014).

DOI: 10.1016/j.phpro.2014.08.135

Google Scholar

[20] L.E. Criales, Y.M. Arısoy, T. Özel, Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625,, Int. J. Adv. Manuf. Technol. 86 (9–12), 2653–2666 (2016).

DOI: 10.1007/s00170-015-8329-y

Google Scholar

[21] Y. Huang, L.J. Yang, X.Z. Du, Y.P. Yang, Finite element analysis of thermal behavior of metal powder during selective laser melting,, Int. J. Therm. Sci. 104, 146–157 (2016).

DOI: 10.1016/j.ijthermalsci.2016.01.007

Google Scholar

[22] J. Sun, Y. Yang, D. Wang, Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method, Opt. Laser Technol. 49 , 118–124. (2013).

DOI: 10.1016/j.optlastec.2012.12.002

Google Scholar

[23] M.-H. Hong, B.K. Min, T.-Y. Kwon, The Influence of Process Parameters on the Surface Roughness of a 3D-Printed Co–Cr Dental Alloy Produced via Selective Laser Melting, NATO Adv. Sci. Inst. Ser. E Appl. Sci. 6, 401. (2016).

DOI: 10.3390/app6120401

Google Scholar

[24] S.A. Khairallah, A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol. 214 p.2627–2636. (2016).

DOI: 10.1016/j.jmatprotec.2014.06.001

Google Scholar

[25] S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, , vol. 108, p.36–45.(2016).

DOI: 10.1016/j.actamat.2016.02.014

Google Scholar

[26] S. Ly, A.M. Rubenchik, S.A. Khairallah, G. Guss, and M.J. Matthews, Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing,, Sci. Rep., vol.7, p.4085 (2017).

DOI: 10.1038/s41598-017-04237-z

Google Scholar