[1]
T. Caffrey, I. Campbell, T. Wohlers, Wohlers Report 2016-3D Printing and Additive Manufacturing State of the Industry. Annual Worldwide Progress Report, Wohlers Associates, Fort Collins, (2016).
Google Scholar
[2]
L.E. Loh, C.K. Chua, W.Y. Yeong, J. Song, M. Mapar, S.L. Sing, Z.H. Liu, D.Q. Zhang, Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061,, Int. J. Heat Mass Transf. 80, 288–300 (2015).
DOI: 10.1016/j.ijheatmasstransfer.2014.09.014
Google Scholar
[3]
J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw, B. Van Hooreweder, On the influence of laser defocusing in Selective Laser Melting of 316L,, Addit. Manuf. 23 161–169 (2018).
DOI: 10.1016/j.addma.2018.08.006
Google Scholar
[4]
K. Kempen, Expanding the Materials Palette for Selective Laser Melting of Metals, KU Leuven, Belgium, (2015).
Google Scholar
[5]
L. Wang, Q. Wei, Y. Shi, J. Liu, W. He, Experimental investigation into the singletrack of Selective Laser Melting of IN625, Adv. Mater. Res. 233-235, 2844–2848. (2011).
DOI: 10.4028/www.scientific.net/amr.233-235.2844
Google Scholar
[6]
T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, and X. Zeng, Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode,, Mater. Design 135; 257–266 (2017).
DOI: 10.1016/j.matdes.2017.09.014
Google Scholar
[7]
W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol. 214, 2915–2925. (2014).
DOI: 10.1016/j.jmatprotec.2014.06.005
Google Scholar
[8]
S.A. Khaillarah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater. 108, 36–45. (2016).
DOI: 10.1016/j.actamat.2016.02.014
Google Scholar
[9]
Panwisawas, C. et al. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scripta Materialia 105, 14–17 (2015).
DOI: 10.1016/j.scriptamat.2015.04.016
Google Scholar
[10]
M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Addit. Manuf. 14, 39–48. (2017).
DOI: 10.1016/j.addma.2016.12.001
Google Scholar
[11]
M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, Denudation of metal powder layers in laser powder bed fusion processes, Acta Mater. 114, 33–42. (2016).
DOI: 10.1016/j.actamat.2016.05.017
Google Scholar
[12]
M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, Denudation of metal powder layers in laser powder bed fusion processes, Acta Mater. 114, 33–42 (2016).
DOI: 10.1016/j.actamat.2016.05.017
Google Scholar
[13]
X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, Z. Shen, Textures formed in a CoCrMo alloy by selective laser melting, J. Alloys Compd. 631 ,153–164. (2015).
DOI: 10.1016/j.jallcom.2015.01.096
Google Scholar
[14]
N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, and C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting,, Addit. Manuf. 1, 77–86 (2014).
DOI: 10.1016/j.addma.2014.08.001
Google Scholar
[15]
A. Yadollahi, N. Shamsaei, S.M. Thompson, D.W. Seely, Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel, Materials Science and Engineering: A. 644 , 171–183. (2015).
DOI: 10.1016/j.msea.2015.07.056
Google Scholar
[16]
K. Antony, N. Arivazhagan, K. Senthilkumaran, Numerical and experimental investigations on laser melting of stainless steel 316L metal powders,, J. Manuf. Process. 16 (3), 345–355 (2014).
DOI: 10.1016/j.jmapro.2014.04.001
Google Scholar
[17]
S. Mohanty, J. Hattel, Cellular scanning strategy for selective laser melting: Capturing thermal trends with a low-fidelity, pseudo-analytical model,, Math. Probl. Eng., ID 715058 (2014).
DOI: 10.1155/2014/715058
Google Scholar
[18]
T. Heeling, M. Cloots, K. Wegener, Melt pool simulation for the evaluation of process parameters in selective laser melting,, Addit. Manuf. 14, 116– 125 (2017).
DOI: 10.1016/j.addma.2017.02.003
Google Scholar
[19]
S. Mohanty, J.H. Hattel, Numerical model based reliability estimation of selective laser melting process,, Phys. Proc. 56, 379–389 (2014).
DOI: 10.1016/j.phpro.2014.08.135
Google Scholar
[20]
L.E. Criales, Y.M. Arısoy, T. Özel, Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625,, Int. J. Adv. Manuf. Technol. 86 (9–12), 2653–2666 (2016).
DOI: 10.1007/s00170-015-8329-y
Google Scholar
[21]
Y. Huang, L.J. Yang, X.Z. Du, Y.P. Yang, Finite element analysis of thermal behavior of metal powder during selective laser melting,, Int. J. Therm. Sci. 104, 146–157 (2016).
DOI: 10.1016/j.ijthermalsci.2016.01.007
Google Scholar
[22]
J. Sun, Y. Yang, D. Wang, Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method, Opt. Laser Technol. 49 , 118–124. (2013).
DOI: 10.1016/j.optlastec.2012.12.002
Google Scholar
[23]
M.-H. Hong, B.K. Min, T.-Y. Kwon, The Influence of Process Parameters on the Surface Roughness of a 3D-Printed Co–Cr Dental Alloy Produced via Selective Laser Melting, NATO Adv. Sci. Inst. Ser. E Appl. Sci. 6, 401. (2016).
DOI: 10.3390/app6120401
Google Scholar
[24]
S.A. Khairallah, A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol. 214 p.2627–2636. (2016).
DOI: 10.1016/j.jmatprotec.2014.06.001
Google Scholar
[25]
S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, , vol. 108, p.36–45.(2016).
DOI: 10.1016/j.actamat.2016.02.014
Google Scholar
[26]
S. Ly, A.M. Rubenchik, S.A. Khairallah, G. Guss, and M.J. Matthews, Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing,, Sci. Rep., vol.7, p.4085 (2017).
DOI: 10.1038/s41598-017-04237-z
Google Scholar