[1]
H. Voorhees, R. Millwater, R. Bagley, Complex variable methods for shape sensitivity of finite elements models, Finite Elem. Anal. Des. 47 (2011) 1146-1156.
DOI: 10.1016/j.finel.2011.05.003
Google Scholar
[2]
D. Ramirez-Tamayo, A. Soulami, V. Gupta, D. Restrep, A. Montoya, H. Millwater, A complex-variable cohesive finite element subroutine to enable efficient determination of interfacial cohesive material parameters, Eng. Fract. Mech. 247 (2021) 107638.
DOI: 10.1016/j.engfracmech.2021.107638
Google Scholar
[3]
J. Lopez, C. Anitescu, T. Rabczuk, Isogeometric structural shape optimization using automatic sensitivity analysis, Appl. Math. Model. 89 (2021) 1004-1024.
DOI: 10.1016/j.apm.2020.07.027
Google Scholar
[4]
F. Jiang, W. Zhao, L. Chen, Ch. Zheng, H. Chen, Combined shape and topology optimization for sound barrier by using the isogeometric boundary element method, Eng. Anal. Bound. Elem, 124 (2021) 124-136.
DOI: 10.1016/j.enganabound.2020.12.009
Google Scholar
[5]
M. Kleiber, Parameter sensitivity in non-linear mechanics, J. Willey & Sons, London, (1997).
Google Scholar
[6]
K. Dems, B, Rousselet, Sensitivity analysis for transient heat equation in a solid body- part I, Struct. Optim., 17 (1999) 36-45.
DOI: 10.1007/bf01197711
Google Scholar
[7]
T.Burczyński, Sensitivity analysis, optimization and inverse problems, in: Boundary element advances in solid mechanics, Springer-Verlag, Wien, New York, (2004).
DOI: 10.1007/978-3-7091-2790-2_6
Google Scholar
[8]
A G.A. Haveroth, J.Stahlschmidt, P.A. Munoz-Rojas, Application of the complex variable semi-analytical method for improved displacement sensitivity evaluation in geometrically nonlinear truss problems, Lat. Am. J. Solids Struct. 12 (2015) 980-1005.
DOI: 10.1590/1679-78251911
Google Scholar
[9]
C.A. Brebbia, J.Dominguez, Boundary elements, an introductory course, CMP, McGraw-Hill. (1992).
Google Scholar
[10]
E. Majchrzak, M.Paruch, Identification of electromagnetic field parameters assuring the cancer destruction during hyperthermia treatment. Inverse Probl. Sci. Eng. 19,1 (2011) 45-58.
DOI: 10.1080/17415977.2010.531473
Google Scholar
[11]
E, Majchrzak, B. Mochnacki, M. Jasinski, Numerical modeling of bioheat transfer in multi-layered skin tissue domain subjected to a flesh fire, Computational Fluid and Solid Mechanics, Edited by K.J. Bathe, Elsevier, (2003).
DOI: 10.1016/b978-008044046-0.50431-0
Google Scholar
[12]
G. Dziatkiewicz, Complex variable step method for sensitivity analysis of effective properties in multi-field micromechanics, Acta Mech. 227 (2016) 11-28.
DOI: 10.1007/s00707-015-1419-y
Google Scholar
[13]
E. Majchrzak, D. Tarasek, Shape sensitivity analysis with respect to the parameters of internal hole, Scientific Research of the Institute of Mathematics and Computer Science, 7, 1 (2008) 129-140.
Google Scholar
[14]
H. Cartan, Elementary theory of analytic functions of one or several complex variables, Dover Publications, Dover, (1995).
Google Scholar
[15]
J.R.R. A. Martins, P. Sturdza, J.J. Alonso, The complex-step derivative approximation, ACM Trans. Math. Softw. 29,3 (2003) 245-262.
DOI: 10.1145/838250.838251
Google Scholar
[16]
E.Majchrzak, B.Mochnacki, Application of the BEM in the thermal theory of foundry, Eng. Anal. Bound. Elem, 16, 2 (1995) 99-121.
DOI: 10.1016/0955-7997(95)00049-6
Google Scholar
[17]
B.Mochnacki, Application of the BEM for numerical modeling of continuous casting, Comput.Mech. 18, 1 (1996) 62-71.
Google Scholar
[18]
A. Iga, S. Nishiwaki, K. Izui, M. Yoshimura, Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection, Int. J. Heat Mass Trans. Vol. 52, 11 (2009) 2721-2732.
DOI: 10.1016/j.ijheatmasstransfer.2008.12.013
Google Scholar
[19]
G. Biswas, A. Dalal, V. K. Dhir, Fundamentals of convective heat transfer, Taylor and Francis Group, LLC CRC, Boca Raton, London, New York, (2019).
Google Scholar
[20]
M. N. Ozisik, H. R. B. Orlande, Inverse Heat Transfer, Taylor & Francis, New York, (2000).
Google Scholar