Numerical and Geometrical Analysis of the Onshore Oscillating Water Column Wave Energy with a Ramp

Article Preview

Abstract:

This study is about a two-dimensional numerical analysis of the influence of a ramp in front on an oscillating water column wave energy converter (OWC-WEC). The main purpose was to evaluate, numerically and geometrically, the effect of using a ramp variation in relation to the frontal wall on the hydropneumatic power of the OWC-WEC. The constructal design method was applied for geometric analysis. The problem had a geometric constraint: the area of the ramp (A2) and two degrees of freedom: H2 / L2 (ratio of the height and length of the ramp) and L4 (the distance of the ramp concerning the OWC-WEC front wall). In numerical simulations, the equations of conservation of mass, momentum, and an equation for the transport of volumetric fraction were solved using the finite volume method (FVM). The multiphase model volume of fluid (VOF) was applied for the air-water interaction. Thus, the increase in the H2/L2 ratio resulted in a decrease of the root mean square (RMS) of the available hydropneumatic power (Phyd). By varying the distance L4, the better case was = 6 m and / = 0.025 and the worst case was = 1 m and / = 0.2. The relative difference between the better RMS Phyd = 150.7957 W and the worst Phyd = 73.1164 W reached up to a hundred and six percent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-26

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IAEA (International Atomic Energy Agency). (2020). Climate Change and Nuclear Power 2020. https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1911_web.pdf. Accessed 14 April (2021).

Google Scholar

[2] Martins, F., Felgueiras, C., Smitkova, M., & Nídia, C. (2019). Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies, 12, 964. https://doi.org/10.3390/en12060964.

DOI: 10.3390/en12060964

Google Scholar

[3] Arutyunov, V. S., & Lisichkin, G. V. (2017). Energy resources of the 21st century: problems and forecasts. Can renewable enerny sources replace fossil fuels? Russian Chemical Reviews, 86(8), 777–804. http://dx.doi.org/10.1070/RCR4723.

DOI: 10.1070/rcr4723

Google Scholar

[4] Drew, B., Plummer, A. R., & Sahinkaya, M. N. (2009). A review of wave energy converter technology. Journal of Power and Energy, 223(8), 887–902. https://doi.org/10.1243/09576509JPE782.

DOI: 10.1243/09576509jpe782

Google Scholar

[5] López, I., & Iglesias, G. (2014). Efficiency of OWC wave energy converters: A virtual laboratory. Applied Ocean Research, 44, 63–70. https://doi.org///doi.org/10.1016/j.apor. 2013.11.001.

DOI: 10.1016/j.apor.2013.11.001

Google Scholar

[6] Horko, M. (2007). CFD optimisation of an oscillating water column wave energy converter (Master's thesis). The university of Western Australia.

Google Scholar

[7] Belkacem, B., & Larbi, S. (2013). Contribution to the Geometry Optimization of an Oscillating Water Column Wave Energy Converter. Energy Procedia, 36, 565–573. https://doi.org/10.1016/j.egypro.2013.07.065.

DOI: 10.1016/j.egypro.2013.07.065

Google Scholar

[8] Boccotti, P. (2007). Comparison between a U-OWC and a conventional OWC. Ocean Engineering, 34, 799–805. https://doi.org/10.1016/j.oceaneng.2006.04.005.

DOI: 10.1016/j.oceaneng.2006.04.005

Google Scholar

[9] Ning, D.-Z., Ke, S., Mayon, R., & Zhang, C. (2019). Numerical Investigation on Hydrodynamic Performance of an OWC Wave Energy Device in the Stepped Bottom. Frontiers in Energy Research, 7. https://doi.org/10.3389/fenrg.2019.00152.

DOI: 10.3389/fenrg.2019.00152

Google Scholar

[10] Hayati, M., Nikseresht, A. H., & Haghighi, A. T. (2020). Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics. Renewable Energy, 161, 386–394. https://doi.org/10.1016/j.renene.2020.07.073.

DOI: 10.1016/j.renene.2020.07.073

Google Scholar

[11] Ning, D., Guo, B., Wang, R., & Vyzikas, T. (2020). Geometrical investigation of a U-shaped oscillating water column wave energy device. Applied Ocean Research, 97(102105). https://doi.org/10.1016/j.apor.2020.102105.

DOI: 10.1016/j.apor.2020.102105

Google Scholar

[12] Teixeira, P. R. F., Davyt, D. P., Didier, E., & Ramalhais, R. (2013). Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations. Energy, 61, 513–530. https://doi.org/10.4028/www.scientific.net/DDF.396.12.

DOI: 10.1016/j.energy.2013.08.062

Google Scholar

[13] Gaspar, L. A., Teixeira, P. R. F., & Didier, E. (2020). Numerical analysis of the performance of two onshore oscillating water column wave energy converters at different chamber wall slopes. Ocean Engineering, 201. https://doi.org/10.1016/j.oceaneng.2020.107119.

DOI: 10.1016/j.oceaneng.2020.107119

Google Scholar

[14] Deng, Z., Wang, C., Wang, P., Higuera, P., & Wang, R. (2019). Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study. Elsevier, 115941. https://doi.org/10.1016/j.energy.2019.115941.

DOI: 10.1016/j.energy.2019.115941

Google Scholar

[15] Bejan, A. (1997). Constructal-theory network of conducting paths for cooling a heat generating volume. International Journal of Heat e Mass Tranfer, 40(4), 799–816. https://doi.org/10.1016/0017-9310(96)00175-5.

DOI: 10.1016/0017-9310(96)00175-5

Google Scholar

[16] Bejan, A., & Zane, J. P. (2012). Design in Nature. ASME, 134(06), 42–47. https://doi.org/ 10.1115/1.2012-JUN-4.

Google Scholar

[17] Bejan, A. (2000). Shape and Structure: From Engineering to Nature. United Kingdom: Cambridge University Press.

Google Scholar

[18] Rocha, L., Sylvie, L., & Bejan, A. (2012). Constructal Law and the Unifying Principle of Design (2013th ed.). Springer.

Google Scholar

[19] Gomes, M. N., Deus, M. J., Dos Santos, E. D., & Isoldi, L. A. (2019). Analysis of the Geometric Constraints Employed in Constructal Design for Oscillating Water Column Devices Submitted to the Wave Spectrum through a Numerical Approach. Defect and Diffusion Forum, 390, 193–210. https://doi.org/10.4028/www.scientific.net/DDF.390.193.

DOI: 10.4028/www.scientific.net/ddf.390.193

Google Scholar

[20] Gomes, M. das N., Lorenzini, G., Rocha, L. A. O., Santos, E. D., & Isoldi, L. A. (2018). Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods. Journal of Engineering Thermophysics, 27(2), 173–190. https://doi.org/10.1134/S1810232818020042.

DOI: 10.1134/s1810232818020042

Google Scholar

[21] Letzow, M. (2014). Avaliação geométrica da câmara de um dispositivo OWC onshore inserido em um tanque com rampa triangular em escala real empregando constructal design (Master's thesis). Federal University of Rio Grande, Brazil. Retrieved from https://ppgeo.furg.br/dissertacoes-e-teses/41-publicaes-de-2014/138-10508dissertacao-max-letzow.

DOI: 10.5380/rber.v6i3.52992

Google Scholar

[22] Letzow, M., Lorenzini, G., Barbosa, D., Hübner, R., Rocha, L., Gomes, M., Isoldi, L., & Dos Santos, E. (2020). Numerical Analysis of the Influence of Geometry on a Large Scale Onshore Oscillating Water Column Device with Associated Seabed Ramp. International Journal of Design & Nature and Ecodynamics, 873–884. https://doi.org/10.18280/ijdne.150613.

DOI: 10.18280/ijdne.150613

Google Scholar

[23] Falcão, A. F. de O. (2010). Wave energy utilization: A review of the technologies. Renewable and Sustainable Energy Reviews, 14, 899–918. https://doi.org/10.1016/j.rser.2009.11.003.

DOI: 10.1016/j.rser.2009.11.003

Google Scholar

[24] Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2). Singapura: World Scientific. https://doi.org/10.1142/1232.

Google Scholar

[25] Barreiro, T. G. (2009). Estudo da interação de uma onda monocromática com um conversor de energia (Master's thesis). Faculty of Science and Technology, Universidade Nova de Lisboa.

Google Scholar

[26] GOMES, M. das N. (2014). Design Construtal de dispositivos conversores de energia das ondas do mar em energia elétrica do tipo coluna de água oscilante (Doctor's Thesis). Federal University of Rio Grande do sul, Brazil. Retrieved from https://www.lume.ufrgs.br/handle/10183/109161.

DOI: 10.14808/sci.plena.2017.049915

Google Scholar

[27] Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[28] Simonetti, I., Cappietti, L., Elsafti, H., & Oumeraci, H. (2017). Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study. Energy, 139, 1197–1209. https://doi.org/10.1016/j.energy.2017.08.033.

DOI: 10.1016/j.energy.2017.08.033

Google Scholar

[29] SCHLICHTING, H. (1979). Boundary Layer Theory (7th ed.). New York: McGraw-Hill.

Google Scholar

[30] Marjani, A., Castro, F., Bahaji, M., & Filali, B. (2006). 3D unsteady flow simulation in an OWC wave conventer plant. Renewable Energy & power quality journal, 1, 350–355. https://doi.org/10.24084/REPQJ04.452.

DOI: 10.24084/repqj04.452

Google Scholar

[31] Dizardji, N., & Sajadian, S. E. (2011). Modeling and optimization of the chamber of OWC system. Energy, 36, 2360–2366. https://doi.org/10.1016/j.energy.2011.01.010.

DOI: 10.1016/j.energy.2011.01.010

Google Scholar

[32] Ferziger, J. H., & Peric, M. (1996). Computacional Methods for Fluid Dynamics (1st ed.). Berlim: Springer.

Google Scholar