Optimization of Tungsten Inert Gas Welding Process Parameters for AISI 304 Stainless Steel

Article Preview

Abstract:

Tungsten Inert Gas welding process (TIG) has been widely used in industries. A robotic arm has been adopted in the industry with objectives to replace or efficiently improved some severe welding conditions where it is dangerous for human and to increase productivity and quality. This research is aimed to find the optimal conditions of TIG welding process on AISI 304 stainless steel. The design of experiments used a statistical method to determine the optimal TIG welding conditions providing the strongest tensile strength across the weldment. The fractional factorial experimental design and then the central composite design were used as a response surface method to find the optimal TIG welding conditions for AISI 304 stainless steel using robotics system. The statistically significant factors and their optimal values are the welding current (136 Ampere), welding speed (13 cm/min), wire feed rate (93 cm/min), and the arc gap (2.5 mm). After that, the residual stress caused by TIG welding at the optimal condition was measured by X-ray diffraction (XRD) technique. The results showed that the weldment obtained from the optimal welding conditions provides compressive residual stresses which cause the materials to be stronger.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-28

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Erden and B. Marić: Robot. Comput. Integr. Manuf. Vol. 27(4) (2011), pp.818-828.

Google Scholar

[2] H. Matsumura, T. Nakagomi and S. Takada: Weld. Int. Vol. 28(4) (2014), pp.264-272.

Google Scholar

[3] J.N. Pires, A. Loureiro, T. Godinho, P. Ferreira, B. Fernando and J. Morgado: IEEE Robot. Autom. Mag. Vol. 10(2) (2003), pp.45-55.

DOI: 10.1109/mra.2003.1213616

Google Scholar

[4] A. Baisukhan, W. Nakkiew and S. Pitjamit: LNEE Ind. Eng. Manag. Sci. Appl. Vol. 349 (2015), pp.77-84.

Google Scholar

[5] S. Nagaraju, P. Vasantharaja, N. Chandrasekhar, M. Vasudevan and T. Jayakumar: Mater. Manuf. Process. Vol. 31(3) (2016), pp.319-327.

Google Scholar

[6] K. Velazquez, G. Estrada and A. Gonzalez: J. Appl. Sci. Vol. 14 (2014), pp.2285-2291.

Google Scholar

[7] M.W. Hester and J. Usher: Prod. Manuf. Res. Vol. 5(1) (2017), pp.118-139.

Google Scholar

[8] R.S. Vidyarthy, D.K. Dwivedi and V. Muthukumaran: Mater. Manuf. Process. Vol. 33(7) (2018), pp.709-717.

Google Scholar

[9] S. Desai and M. Lovell: Int. J. Ind. Eng. : Theory Appl. Pract. Vol. 15(1) (2008), pp.104-112.

Google Scholar

[10] H. Vemanaboina, S. Akella and R.K. Buddu: Procedia Mat. Sci. Vol. 6 (2014), pp.1539-1546.

Google Scholar

[11] N. Yang, L. Chen, H. Yi and Y. Liu: J. Vibroengineering Vol. 18(4) (2016), pp.2016-2030.

Google Scholar

[12] P. Juijerm, U. Noster, I. Altenberger and B. Scholtes: Mater. Sci. Eng., A Vol. 379(1) (2004), pp.286-292.

Google Scholar

[13] R.P. Didyk, A.N. V'Yunnik, V.V. Zil and é.A. Masakovskii: Strength Mater. Vol. 26(11) (1994), pp.825-828.

DOI: 10.1007/bf02216113

Google Scholar

[14] Z.P. Cai, J.A. Lin, L.A. Zhou and H.Y. Zhao: Mater. Sci. Technol. Vol. 20(12) (2004), pp.1563-1566.

Google Scholar

[15] A.A. García-Granada, G. Gomez-Gras, R. Jerez-Mesa, J.A. Travieso-Rodriguez and G. Reyes: Mater. Manuf. Process. Vol. 32(11) (2017), pp.1279-1289.

DOI: 10.1080/10426914.2017.1317351

Google Scholar

[16] A.M. Abrão, B. Denkena, J. Köhler, B. Breidenstein and T. Mörke: Int. J. Adv. Manuf. Technol. Vol. 79(9) (2015), pp.1939-1947.

DOI: 10.1007/s00170-015-6946-0

Google Scholar

[17] A. Ghasemi, S.M. Hassani-Gangaraj, A.H. Mahmoudi, G.H. Farrahi and M. Guagliano: Surf. Eng. Vol. 32(11) (2016), pp.861-870.

DOI: 10.1080/02670844.2016.1192336

Google Scholar

[18] B. Qiang, Y. Li, C. Yao and X. Wang: Surf. Eng. Vol. 34(12) (2018), pp.938-945.

Google Scholar

[19] A. Baisukhan and W. Nakkiew: Appl. Mech. Mater. Vol. 752-753 (2015), pp.500-504.

Google Scholar

[20] B.Q. Chen, M. Hashemzadeh and C. Guedes Soares: Ships Offshore Struct. Vol. 13(3) (2018), pp.273-282.

Google Scholar