[1]
H.K.D.H. Bhadeshia, Steels for bearings, Progr. Mater. Sci. 57 (2012) 268–435.
Google Scholar
[2]
M.G. Krukovich, B.A. Prusakov, I.G. Sizov, Plasticity of boronized layers, Springer Series in Materials Science, 237, Springer, (2016).
DOI: 10.1007/978-3-319-40012-9
Google Scholar
[3]
A.K. Sinha, Heat treating: boriding (boronizing) of steels, in: ASM Handbook, (1991).
Google Scholar
[4]
M. Arslan, A. Cem Ok, G. Kartal Sireli, S. Timur, Investigation on structural and tribological properties of borided gear steel after phase homogenization, Surf. Coat. Technol. 429 (2022) 127967.
DOI: 10.1016/j.surfcoat.2021.127967
Google Scholar
[5]
R.C. Morón, L. Melo-Máximo, I. Campos-Silva D.V. Melo-Máximo, I. Arzate-Vázquez, N. López-Perrusquia, J. Solis-Romero, Dry and grease-lubricated reciprocating wear resistance of borided AISI 52100 steel, Mater. Lett. 320 (2022) 132404.
DOI: 10.1016/j.matlet.2022.132404
Google Scholar
[6]
A. Márquez-Herrera, A. Saldaña-Robles, M. Zapata-Torres, J.F. Reveles-Arredondo, J.A. Diosdado-De la Peña, Duplex surface treatment on ASTM A-36 steel by slide burnishing and powder pack boriding, Mater. Today Commun. 31 (2022) 103703.
DOI: 10.1016/j.mtcomm.2022.103703
Google Scholar
[7]
C.T. Sezgin, F. Hayat, The effects of boriding process on tribological properties and corrosive behavior of a novel high manganese steel, J. Mater. Process. Technol. 300 (2022) 117421.
DOI: 10.1016/j.jmatprotec.2021.117421
Google Scholar
[8]
O. Delai, C. Xia, L. Shiqiang, Growth kinetics of the FeB/Fe2B boride layer on the surface of 4Cr5MoSiV1 steel: experiments and modelling, J. Mater. Res. Technol. 11 (2021) 1272–1280.
DOI: 10.1016/j.jmrt.2021.01.109
Google Scholar
[9]
S. Vinodh Kumar, G. Surya Raj, M. Prince, Effects of pack boriding and induction boriding on the dry sliding wear behavior of high speed steel, Mater. Today: Proceedings 59 (2022) 1105–1110.
DOI: 10.1016/j.matpr.2022.03.019
Google Scholar
[10]
E. Francoa, C.E. da Costa, J.C. Giubilei Milan, S.A. Tsipas, E. Gordo, Multi-component boron and niobium coating on M2 high speed steel processed by powder metallurgy, Surf. Coat. Technol. 384 (2020) 125306.
DOI: 10.1016/j.surfcoat.2019.125306
Google Scholar
[11]
L. Gutierrez-Noda, C.A. Cuao-Moreu, O. Perez-Acosta, E. Lorenzo-Bonet, P. Zambrano-Robledo, M.A.L. Hernandez-Rodriguez, The effect of a boride diffusion layer on the tribological properties of AISI M2 steel, Wear 426–427 (2019) 1667–1671.
DOI: 10.1016/j.wear.2019.01.089
Google Scholar
[12]
A. Günen, M. Keddam, S. Alkan, A. Erdogan, M. Çetin, Microstructural characterization, boriding kinetics and tribo-wear behavior of borided Fe-based A286 superalloy, Mater. Charact. 186 (2022) 111778.
DOI: 10.1016/j.matchar.2022.111778
Google Scholar
[13]
A. Erdogan, A. Günen, M.S. Gök, S. Zeytin, Microstructure and mechanical properties of borided CoCrFeNiAl0.25Ti0.5 high entropy alloy produced by powder metallurgy, Vacuum 183 (2021) 109820.
DOI: 10.1016/j.vacuum.2020.109820
Google Scholar
[14]
C.A. Cuao-Moreu, E. Hernández-Sanchéz, M. Alvarez-Vera, E.O. Garcia-Sanchez, A. Perez-Unzueta, M.A.L. Hernandez-Rodriguez, Tribological behavior of borided surface on CoCrMo cast alloy, Wear 426–427 (2019) 204–211.
DOI: 10.1016/j.wear.2019.02.006
Google Scholar
[15]
P.A. Dearnly, A. Matthews, A. Leyland, Tribological behaviour of thermochemically surface engineered steels, in: E.J. Mittemeijer, M.A.J. Somers (Eds.), Thermochemical Surface Engineering of Steels, Woodhead Publishing, 2015, p.241–266.
DOI: 10.1533/9780857096524.2.241
Google Scholar
[16]
A. Chaus, Cast Metal-Cutting Tools Made of High-Speed Steels, Forschungszentrum Dresden–Rossendorf, (2010).
Google Scholar
[17]
A.S. Chaus, F.I. Rudnickii, M. Boháčik, J. Porubský, P. Úradník, Cast metal-cutting tools: their production, materials and applications. Int. J. Adv. Mach. Form. Oper. 2 (1) (2010) 35–53.
Google Scholar
[18]
A.S. Chaus, F.I. Rudnitskii, Influence of cutting conditions of cast-metal cutting tools on their wear and durability: Analysis of cutting conditions of tools, J. Frict. Wear, 28 (5) (2007) 416–421.
DOI: 10.3103/s1068366607050029
Google Scholar
[19]
A.S. Chaus, L'. Čaplovič, J. Porubský, Microstructure and properties of CBN diffusion coating on high-speed steel, Defect Diffus. Forum 312–315 (2011) 542–547.
DOI: 10.4028/www.scientific.net/ddf.312-315.542
Google Scholar
[20]
A.S. Chaus, P. Pokorný, Ľ. Čaplovič, M.V. Sitkevich, J. Peterka, Complex fine-scale diffusion coating formed at low temperature on high-speed steel substrate, Appl. Surf. Sci. 437 (2018) 257–270.
DOI: 10.1016/j.apsusc.2017.12.173
Google Scholar
[21]
A.S. Chaus, M.V. Sitkevich, P. Pokorný, Cutting tests for end-milling radius cutters of high-speed steel with and without diffusion coating, J. Frict. Wear. 31 (6) (2010), 419–425.
DOI: 10.3103/s1068366610060036
Google Scholar
[22]
A.S. Chaus, M.V. Sitkevich, P. Pokorný, M. Sahul, M. Haršáni, P. Babincová, Wear resistance and cutting performance of high-speed steel ball nose end mills related to the initial state of tool surface, Wear 472-473 (2021) 203711.
DOI: 10.1016/j.wear.2021.203711
Google Scholar
[23]
A.S. Chaus, M. Sahul, R. Moravčík, R. Sobota, Role of microstructural factor in wear resistance and cutting performance of high-speed steel end mills, Wear 474-475 (2021) 203865.
DOI: 10.1016/j.wear.2021.203865
Google Scholar
[24]
A.S. Chaus, M. Hudáková, Wear resistance of high-speed steels and cutting performance of tool related to structural factors, Wear 267 (2009) 1051–1055.
DOI: 10.1016/j.wear.2008.12.101
Google Scholar
[25]
A.S. Chaus, M. Bračík, M. Sahul, M. Dománková, Microstructure and properties of M2 high-speed steel cast by the gravity and vacuum investment casting, Vacuum 162 (2019) 183–198.
DOI: 10.1016/j.vacuum.2019.01.041
Google Scholar
[26]
A. Schneider, G. Inden, Carbon diffusion in cementite (Fe3C) and Hägg carbide (Fe5C2), Comput. Coupling Ph. Diagr. Thermochem. 31 (2007) 141–147.
DOI: 10.1016/j.calphad.2006.07.008
Google Scholar