Transmission Electron Microscopy Observation of the Fuel Cell Catalyst Degradation during the Oxygen Reduction Reaction

Article Preview

Abstract:

Increasing durability of catalysts used in fuel cells is a necessary condition for their widespread commercialization. Fulfilling this condition requires understanding the catalyst degradation mechanism to propose how to reduce it. Transmission electron microscopy can help solve this problem thanks to the fact that it enables direct observation and thus unambiguous interpretation of the processes taking place. For this purpose, Identical Location Transmission Electron Microscopy (IL-TEM) was applied for observations of a commercial catalyst (platinum nanoparticles with a diameter of about 2 nm deposited on Vulcan carbon black) before and after durability tests. Obtained results may contribute to the development of better models of phenomena occurring during cell operation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-100

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kraytsberg, A., and Ein-Eli, Y. (2014). Review of advanced materials for proton exchange membrane fuel cells. Energy & Fuels, 28(12), 7303-7330.

DOI: 10.1021/ef501977k

Google Scholar

[2] Cano, Z. P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., and Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3(4), 279-289.

DOI: 10.1038/s41560-018-0108-1

Google Scholar

[3] https://www.hyundaiusa.com/us/en/vehicles/nexo.; https://www.toyota.com/mirai/fcv.html.; https://automobiles.honda.com/clarity-fuel-cell.

Google Scholar

[4] Debe, M. K. (2012). Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486(7401), 43-51.

DOI: 10.1038/nature11115

Google Scholar

[5] Gasteiger, H. A., Kocha, S. S., Sompalli, B., and Wagner, F. T. (2005). Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 56(1-2), 9-35.

DOI: 10.1016/j.apcatb.2004.06.021

Google Scholar

[6] Okonkwo, P. C., Ige, O. O., Uzoma, P. C., Emori, W., Benamor, A., and Abdullah, A. M. (2021). Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International Journal of Hydrogen Energy, 46(29), 15850-15865.

DOI: 10.1016/j.ijhydene.2021.02.078

Google Scholar

[7] Meier, J. C., Galeano, C., Katsounaros, I., Witte, J., Bongard, H. J., Topalov, A. A., ... and Mayrhofer, K. J. (2014). Design criteria for stable Pt/C fuel cell catalysts. Beilstein journal of nanotechnology, 5(1), 44-67.

DOI: 10.3762/bjnano.5.5

Google Scholar

[8] Meyers, J. P. and Darling, R. M. (2006). Model of carbon corrosion in PEM fuel cells. Journal of the Electrochemical Society, 153(8), A1432.

DOI: 10.1149/1.2203811

Google Scholar

[9] Martens, S., Asen, L., Ercolano, G., Dionigi, F., Zalitis, C., Hawkins, A., ... and Schneider, O. (2018). A comparison of rotating disc electrode, floating electrode technique and membrane electrode assembly measurements for catalyst testing. Journal of Power Sources, 392, 274-284.

DOI: 10.1016/j.jpowsour.2018.04.084

Google Scholar

[10] Mayrhofer, K. J. J., Strmcnik, D., Blizanac, B. B., Stamenkovic, V., Arenz, M., and Markovic, N. M. (2008). Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochimica Acta, 53(7), 3181-3188.

DOI: 10.1016/j.electacta.2007.11.057

Google Scholar

[11] Garsany, Y., Baturina, O. A., Swider-Lyons, K. E. and Kocha, S. S. (2010). Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Analytical Chemistry, 82, 6321-6328.

DOI: 10.1021/ac100306c

Google Scholar

[12] Borup, R. L., Kusoglu, A., Neyerlin, K. C., Mukundan, R., Ahluwalia, R. K., Cullen, D. A., and Myers, D. J. (2020). Recent developments in catalyst-related PEM fuel cell durability. Current Opinion in Electrochemistry, 21, 192-200.

DOI: 10.1016/j.coelec.2020.02.007

Google Scholar

[13] Bai, J., Ke, S., Song, J., Wang, K., Sun, C., Zhang, J. and Dou, M. (2022). Surface Engineering of Carbon-Supported Platinum as a Route to Electrocatalysts with Superior Durability and Activity for PEMFC Cathodes. ACS Applied Materials & Interfaces, 14(4), 5287-5297.

DOI: 10.1021/acsami.1c20823

Google Scholar

[14] Zhang, Y., Chen, S., Wang, Y., Ding, W., Wu, R., Li, L., ... and Wei, Z. (2015). Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test. Journal of Power Sources, 273, 62-69.

DOI: 10.1016/j.jpowsour.2014.09.012

Google Scholar

[15] Poidevin, C., Paciok, P., Heggen, M., and Auer, A. A. (2019). High resolution transmission electron microscopy and electronic structure theory investigation of platinum nanoparticles on carbon black. The Journal of Chemical Physics, 150(4), 041705.

DOI: 10.1063/1.5047666

Google Scholar

[16] Mayrhofer, K. J., Hanzlik, M., and Arenz, M. (2009). The influence of electrochemical annealing in CO saturated solution on the catalytic activity of Pt nanoparticles. Electrochimica acta, 54(22), 5018-5022.

DOI: 10.1016/j.electacta.2009.01.079

Google Scholar

[17] Schlögl, K., Mayrhofer, K. J., Hanzlik, M., and Arenz, M. (2011). Identical-location TEM investigations of Pt/C electrocatalyst degradation at elevated temperatures. Journal of Electroanalytical Chemistry, 662(2), 355-360.

DOI: 10.1016/j.jelechem.2011.09.003

Google Scholar

[18] Hodnik, N. and Cherevko, S. (2019). Spot the difference at the nanoscale: identical location electron microscopy in electrocatalysis. Current opinion in electrochemistry, 15, 73-82.

DOI: 10.1016/j.coelec.2019.03.007

Google Scholar

[19] Dubau, L., Castanheira, L., Berthomé, G. and Maillard, F. (2013). An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere. Electrochimica Acta, 110, 273-281.

DOI: 10.1016/j.electacta.2013.03.184

Google Scholar