Analysis of Different Multiobjective Optimization Scenarios in Estimating the Adjustable Parameters of a Generalized Cubic Equation of State

Article Preview

Abstract:

Since the emergence of the van der Waals model, a lot of equations of state have been proposed to represent the pressure-volume-temperature (PVT) behavior of pure compounds, as is the case with GEOS3C, which is a form of generalized cubic equation of state that uses a temperature function dependent on three adjustable parameters. As the predictive capacity of an equation of state is directly related to the use of adequate and efficient methods for estimating the model's parameters, it is advised to use the multiobjective optimization in this class of problems, due to the conflicting nature of the objective functions. In this context, a MOPSO algorithm, based on the Pareto dominance principle, is used to estimate the parameters of the GEOS3C, through the minimization of the deviations in the prediction of different thermodynamic properties: saturation pressure, saturated liquid volume, enthalpy of vaporization and isobaric heat capacity, in order to assess whether it is possible to obtain a model parameterization that is adequate to represent the different properties simultaneously. Comparisons with experimental data available in the literature are performed showing that multiobjective optimization offers new perspectives for improvements in the parameters estimation of equations of state compared to traditional methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-176

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Abdollahi-Demneh, M. Moosavian, M. Montazer-Rahmati, M. Omidkhah, H. Bahmaniar, Comparison of the prediction power of 23 generalized equations of state: Part I. Saturated thermodynamic properties of 102 pure substances, Fluid Phase Equilibria 288 (1-2) (2010) 67–82.

DOI: 10.1016/j.fluid.2009.10.006

Google Scholar

[2] J. D. van der Waals, On the continuity of the gas and liquid state, Ph.D. thesis, University of Leiden, Netherlands (1873).

Google Scholar

[3] N. C. Patel, A. S. Teja, A new cubic equation of state for fluids and fluid mixtures, Chemical Engineering Science 37 (3) (1982) 463–473.

DOI: 10.1016/0009-2509(82)80099-7

Google Scholar

[4] D. Geană, V. Feroiu, A new parametrization of the general cubic equation of state and PVT properties for pure fluids, in: Proceedings of the Romanian Academy: Chemistry, Life Sciences, and Geosciences, Vol. 2, 2000, p.101.

Google Scholar

[5] E. Forte, J. Burger, K. Langenbach, H. Hasse, M. Bortz, Multi-criteria optimization for parameterization of SAFT-type equations of state for water, AIChE Journal 64 (1) (2018) 226–237.

DOI: 10.1002/aic.15857

Google Scholar

[6] T. A. Menegazzo, A. M. Soares Jr., B. T. Mota, N. Henderson, A. P. Pires, Application of an equation of state incorporating association to alcohols up to decanol, Fluid Phase Equilibria 482 (2019) 24–37.

DOI: 10.1016/j.fluid.2018.10.015

Google Scholar

[7] B. T. S. Mota, Estimação de parâmetros de modelos termodinâmicos via otimização multiobjetivo, Ph.D. thesis, Universidade do Estado do Rio de Janeiro, Nova Friburgo (2019).

DOI: 10.12957/eduerj.covid19rj.relatorio2

Google Scholar

[8] P. Rehner, J. Gross, Multiobjective optimization of PCP-SAFT parameters for water and alcohols using surface tension data, Journal of Chemical & Engineering Data 65 (12) (2020) 5698–5707.

DOI: 10.1021/acs.jced.0c00684

Google Scholar

[9] G. R. Silva, Estimação de parâmetros para uma equação cúbica de estado generalizada via otimização multiobjetivo, Ph.D. thesis, Universidade do Estado do Rio de Janeiro, Nova Friburgo (2022).

DOI: 10.52041/srap.15317

Google Scholar

[10] G. R. Silva, T. M. Galo, A. M. Soares Jr., L. N. H. G. Oliveira, Thermodynamic properties calculation of pure compounds using a multiobjective approach in estimating the adjustable empirical parameters of the GEOS3C equation of state, Revista da Engenharia Térmica 21 (4) (2023)09–19.

DOI: 10.5380/reterm.v21i4.89673

Google Scholar

[11] D. Geană, New equation of state for fluids. I. Application to PVT calculi for pure fluids, Revista de Chimie 37 (5) (1986) 303–309.

Google Scholar

[12] L. Riedel, Kritischer koeffizient, dichte des gesättigten dampfes und verdampfungswärme. Untersuchungen über eine erweiterung des theorems der übereinstimmenden zustände. Teil III, Chemie Ingenieur Technik 26 (12) (1954) 679–683.

DOI: 10.1002/cite.330261208

Google Scholar

[13] D. Geană, V. Feroiu, Thermodynamic properties of pure fluids using the GEOS3C equation of state, Fluid Phase Equilibria 174 (1-2) (2000) 51–68.

DOI: 10.1016/s0378-3812(00)00417-9

Google Scholar

[14] C. A. C. Coello, M. S. Lechuga, MOPSO: A proposal for multiple objective Particle Swarm Optimization, in: Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), Vol. 2, IEEE, 2002, p.1051–1056.

DOI: 10.1109/cec.2002.1004388

Google Scholar

[15] V. Pareto, Manual of political economy: a critical and variorum edition, OUP Oxford, 2014.

Google Scholar

[16] R. Eberhart, J. Kennedy, A new optimizer using Particle Swarm theory, in: MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, 1995, p.39–43.

DOI: 10.1109/mhs.1995.494215

Google Scholar

[17] A. M. Soares, B. T. Mota, L. P. Pena, A. P. Pires, Adaptação do algoritmo PSO para problemas multiobjetivo, Iterações com liderança global fixa, Proceeding Series of the Brazilian Society of Computational and Applied Mathematics 7 (1) (2020).

DOI: 10.5540/03.2020.007.01.0349

Google Scholar

[18] L. R. Terron, Termodinâmica Química Aplicada, Vol. 1, Manole, 2009.

Google Scholar

[19] D. W. Green, R. H. Perry, Perry's Chemical Engineers' Handbook, no. C 660.28 P47 2008., McGraw-Hill Education, NY, 2008.

Google Scholar

[20] R. Monroy-Loperena, A note on the analytical solution of cubic equations of state in process simulation, Industrial & Engineering Chemistry Research 51 (19) (2012) 6972–6976.

DOI: 10.1021/ie2023004

Google Scholar

[21] B. E. Poling, J. M. Prausnitz, J. P. O'connell, The properties of gases and liquids, Vol. 5, McGraw-Hill New York, 2001.

Google Scholar

[22] C. A. C. Coello, G. T. Pulido, M. S. Lechuga, Handling multiple objectives with Particle Swarm Optimization, IEEE Transactions on Evolutionary Computation 8 (3) (2004) 256–279.

DOI: 10.1109/tevc.2004.826067

Google Scholar

[23] R. Privat, M. Visconte, A. Zazoua-Khames, J.-N. Jaubert, R. Gani, Analysis and prediction of the alpha-function parameters used in cubic equations of state, Chemical Engineering Science 126 (2015) 584–603.

DOI: 10.1016/j.ces.2014.12.040

Google Scholar