Implementation and Validation of SAFEPORT System at Sines Harbour

Article Preview

Abstract:

SAFEPORT safety system aims to daily reports to the Sines harbor administration, potential emergency situations regarding ships’ operation in port areas caused by extreme weather-oceanographic conditions, that may occur in the next three days. It consists of a set of numerical models and a qualitative risk assessment and forecasting. It uses forecasts provided offshore of the area under the study of sea agitation, wind and tide. The characterization of the response of the free and moored ships at a berth is performed using numerical models which deal with formulations in the frequency and time domain. The system issue alerts, through danger levels associated with risk levels of exceedance of recommended values for movements and forces imposed on ship mooring systems. SAFEPORT can be adapted to any port. So far, it has been developed and adapted to three terminals of the port of Sines, where three different ships were simulated. This paper presents the developments made to date of the safety system, in terms of its implementation and validation. The numerical models run every day, in real-time mode, in a computer cluster. The results are disseminated on a web page and a mobile application in a variety of formats.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-226

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.J.R. Santos, Análise da Interacção de Navios com Dispositivos de Acostagem e Amarração. Estudo em Modelo Físico do Posto" A" do Terminal de Petroleiros do Porto de Leixões, PhD Dissertation, UPorto, (2010) Available at https://hdl.handle.net/10216/58347

DOI: 10.17771/pucrio.acad.37603

Google Scholar

[2] C.J.E.M. Fortes, M.T. Reis, P. Poseiro, J.A. Santos, T. Garcia, R. Capitão, L. Pinheiro, R. Reis, J. Craveiro, I. Lourenço, P. Lopes, A. Rodrigues, A. Sabino, J.P. Araújo, J.C. Ferreira, S.F. Silva, P. Raposeiro, A. Simões, E.B. Azevedo, F.V. Reis, M.C. Silva, C.P. Silva, Ferramenta de apoio à gestão costeira e portuária: o sistema HIDRALERTA, VIII Cong. S. Planea. e Gestão das Zonas Cost. dos Países de Exp. Port. (2015).

DOI: 10.14195/978-989-96253-3-4_65

Google Scholar

[3] J.A. Santos, MOORNAV – Numerical Model for the Behaviour of Moored Ships, final report, Projecto NATO PO-Waves (3/94-B), Lisbon, (1994).

Google Scholar

[4] F.T. Korsemeyer, C.H. Lee, J.N. Newman, P.D. Sclavounos, The analysis of wave effects on tension-leg platforms, Proc. 7th Int. Conf. on Offshore Mech. and Arctic Eng., 1-14. Texas, Houston, (1988).

Google Scholar

[5] A. E. Mynett, P. J. Keuning, F. C. Vis. The Dynamic Behaviour of Moored Vessels Inside a Harbour Configuration. Int. Conf. on Num. and Hydr. Model. of Ports and Harbours. Birmingham, England, (1985).

Google Scholar

[6] A. Persson, User Guide to ECMWF Forecast Products. Meteorological Bulletin M3.2. ECMWF: 115, (2001).

Google Scholar

[7] WAMDI Group, The WAM Model - A third generation ocean wave prediction model. J. Phys. Ocean. 18 (1988) 1775-1810.

DOI: 10.1175/1520-0485(1988)018<1775:twmtgo>2.0.co;2

Google Scholar

[8] D. Flater, XTide Manual: Harmonic Tide Clock and Tide Predictor. Technical Report, USA. (1998). Available on-line at https://flaterco.com/xtide

Google Scholar

[9] T. Whitcomb, Navy global forecast system, NAVGEM: Distribution and user support, 2nd Scientific Workshop on ONR DRI: Unified Parameterization for Extended Range Prediction, (2012).

Google Scholar

[10] N. Booij, R.C. Ris, L.H. Holthuijsen, A third‐generation wave model for coastal regions: 1. Model description and validation, J. of Geoph. Res.: Oceans, 104(C4) (1999) 7649-7666

DOI: 10.1029/98JC02622

Google Scholar

[11] C.J.E.M. Fortes, Transformações Não Lineares de Ondas em Portos. Análise pelo Método dos Elementos finitos, tese de doutoramento em Engenharia Mecânica, IST, Lisboa, Portugal, 2002. Available at http://repositorio.lnec.pt:8080/jspui/handle/123456789/8712

DOI: 10.26678/abcm.conem2018.con18-0766

Google Scholar

[12] L.V. Pinheiro, C.J. Fortes, J.L. Fernandes, Gerador de malhas de elementos finitos para a simulação numérica de propagação de ondas marítimas, Rev. Int. de Mét. Num. para Cálculo y Diseño en Ing. (RIMNI), 24 (2008).

DOI: 10.1016/j.rimni.2012.03.004

Google Scholar

[13] W.N. Seelig, J.P. Ahrens, Estimation of wave reflection and energy dissipation coefficients for beaches, revetments and breakwaters, CERC Technical paper 81-1, Fort Belvoir, U.S.A.C.E., Vicksburg, MS, (1981).

DOI: 10.5962/bhl.title.47482

Google Scholar

[14] S. Neelamani, H. Schüttrumpf, M. Muttray, H. Oumeraci, Prediction of wave pressures on smooth impermeable seawalls, Ocean Eng. 26 (1999) 739-765.

DOI: 10.1016/s0029-8018(98)00026-2

Google Scholar

[15] D. Hurdle, HYDRO Program Package. Transformation of hydrodynamic characteristics to time domain, Delft Hydraulics, (1987).

Google Scholar