Non-Arrhenius Transport Properties of Glass-Forming Materials in a Wide Temperature Range: A Systematic Study Based on the BSCNF Model

Article Preview

Abstract:

The understanding of the non-Arrhenius transport properties in glass-forming materials is of great importance from both, fundamental and applied points of views. In the present paper, we show that our model, the bond strength-coordination number fluctuation (BSCNF) model describes the temperature dependence of the non-Arrhenius transport coefficients in a wide temperature range. The BSCNF model also enables to characterize the glass-forming materials in terms of the mean values of the bond strength E0, the coordination number Z0 and their fluctuations ΔE and ΔZ of the structural units that form the melts. Importantly, in the light of the BSCNF model, one can discuss the physical implications of the materials that extend from the strong to fragile systems in a systematic way compared to other popular models. In addition, we present a new theory of the vacancy formation, and briefly mention that the extended theory along with the BSCNF model can be applied to discuss the freezing of defects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

June 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] International Year of Glass 2022: Home https://www.iyog2022.org/

Google Scholar

[2] Z.H. Stachurski, G. Wang, X. Tan: An Introduction to Metallic Glasses and Amorphous Metals (Elsevier 2021)

Google Scholar

[3] P.G. Debenedetti, F.H. Stillinger: Nature Vol. 410 (2001) p.259

Google Scholar

[4] S.A. Kivelson, G. Tarjus: Nat. Mater. Vol. 7 (2008) p.831

Google Scholar

[5] C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin: J. Appl. Phys. Vol. 88 (2000) p.3113

Google Scholar

[6] R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek: J. Chem. Phys. Vol. 99 (1993) p.4201

Google Scholar

[7] E. Donth: J. Non-Cryst. Solids Vol. 53 (1982) p.325

Google Scholar

[8] B. Rijal, L. Delbreilh, A. Saiter: Macromolecules Vol. 48 (2015) p.8219

Google Scholar

[9] D.H. Vogel: Phys. Z. Vol. 22 (1921) p.645

Google Scholar

[10] G.S. Fulcher: J. Amer. Ceram. Soc. Vol. 8 (1925) p.339

Google Scholar

[11] G. Tammann, W. Hesse: Z. Anorg. Allg. Chem. Vol. 156 (1926) p.245

Google Scholar

[12] G. Adam, J.H. Gibbs: J. Chem. Phys. Vol. 43 (1965) p.139

Google Scholar

[13] M.H. Cohen, D. Turnbull: J. Chem. Phys. Vol. 31 (1959) p.1164

Google Scholar

[14] J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Proc. Natl. Acad. Sci. U.S. Vol. 106 (2009) p.19780

Google Scholar

[15] J.C. Dyre, N.B. Olsen, T. Christensen: Rhys. Rev. B Vol. 53 (1996) p.2171

Google Scholar

[16] J. Rault: J. Non-Cryst. Solids Vol. 271 (2000) p.177

Google Scholar

[17] M. Aniya: J. Therm. Anal. Calorim. Vol. 69 (2002) p.971

Google Scholar

[18] M. Ikeda, M. Aniya: Materials Vol. 3 (2010) p.5246

Google Scholar

[19] M. Aniya, M. Ikeda: J. Polym. Res. Vol. 27 (2020) p.165

Google Scholar

[20] M. Ikeda, M. Aniya: J. Non-Cryst. Solids Vol. 371-372 (2013) p.53

Google Scholar

[21] R. Soklaski, V. Tran, Z. Nussinov, K.F. Kelton, L. Yang: Philos. Mag. Vol. 96 (2016) p.1212

Google Scholar

[22] M. Ikeda, M. Aniya: Eur. Polym. J. Vol. 86 (2017) p.29

Google Scholar

[23] M. Ikeda, M. Aniya: Philos. Mag. Vol. 103 (2023) p.101

Google Scholar

[24] M. Aniya, M. Ikeda: Solid State Phenom. Vol. 353 (2023) p.143

Google Scholar

[25] C.A. Angell: J. Non-Cryst. Solids Vol. 131-133 (1991) p.13

Google Scholar

[26] A. Falahati, P. Lang, E. Kozeschnik: Mater. Sci. Forum Vol. 706-709 (2012) p.317

Google Scholar

[27] M.I. Mar'yan, A. Szasz: Oncotherm. J. Vol. 16 (2016) p.8

Google Scholar

[28] R. Peredo-Ortiz, M. Medina-Noyola, T. Voigtmann, L.F. Elizondo-Aguilera: J. Chem. Phys. Vol. 156 (2022) 244506

DOI: 10.1063/5.0087649

Google Scholar