Solid-State Synthesis and Characterization of LiNi0.75Co0.20Al0.05O2 Cathodes for Lithium-Ion Battery Applications

Article Preview

Abstract:

The increasing demand for electric vehicles and alternative energy sources results in high demand for energy storage, such as high-capacity rechargeable batteries. Ni-based ternary cathodes like lithium nickel cobalt aluminum oxide (NCA) have become promising due to their high energy density. In this study, a facile solid-state reaction pathway for the synthesis of LiNi0.75Co0.20Al0.05O2 cathode using metal oxide precursors was investigated. Thermal analysis using TGA-DTA showed the decomposition and mass loss of the calcined precursors and revealed an endothermic reaction at about 700°C, which can be attributed to Li2CO3 melting. XRD analysis reveals the creation of hexagonal NCA with an α-NaFeO2 r3m structure along a secondary LCO phase. However, resintering leads to a more thorough reaction, yielding hexagonal NCA with lattice parameters a = 2.863 Å and c = 14.192 Å. In addition, SEM-EDX analysis reveals irregularly shaped agglomerated morphology and relatively homogenous distribution of Ni, Co, and Al for the resintered samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-68

Citation:

Online since:

June 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Purwanto, C. S. Yudha, U. Ubaidillah, H. Widiyandari, T. Ogi, and H. Haerudin: Mater. Res. Express, vol. 5, no. 12, (2018), p.122001

DOI: 10.1088/2053-1591/aae167

Google Scholar

[2] D. H. Doughty and E. P. Roth: Electrochem. Soc. Interface, vol. 21, no. 2, (2012), p.37

Google Scholar

[3] M. S. E. Houache, C.-H. Yim, Z. Karkar, and Y. Abu-Lebdeh: Batteries, vol. 8, no. 7, (2022), Art. no. 7

Google Scholar

[4] C. Curry: Bloom. New Energy Finance, vol. 5, (2017), p.4–6

Google Scholar

[5] M. Doeff, in: Springer Encyclopedia of Sustainability Science and Technology, Springer Science and Business Media, LLC, (2012), p.709–739.

Google Scholar

[6] L. de Biasi et al.: ChemSusChem, vol. 12, no. 10, (2019), p.2240–2250, (2019)

Google Scholar

[7] P.-H. Chien et al.: Batter. Supercaps, vol. 4, no. 11, (2021)

Google Scholar

[8] U.-H. Kim, L.-Y. Kuo, P. Kaghazchi, C. S. Yoon, and Y.-K. Sun: ACS Energy Lett., vol. 4, no. 2, (2019), p.576–582

Google Scholar

[9] Y. Wang, E. Wang, X. Zhang, and H. Yu: Energy Fuels, vol. 35, no. 3, (2021), p.1918–(1932)

Google Scholar

[10] R. Schmuch, R. Wagner, G. Hörpel, T. Placke, and M. Winter: Nat. Energy, vol. 3, no. 4, (2018), Art. no. 4

Google Scholar

[11] G. Nam et al.: J. Energy Chem., vol. 79, (2023), p.562–568

Google Scholar

[12] Z. Qiu, Y. Zhang, P. Dong, D. Wang, and S. Xia: J. Solid State Electrochem., vol. 21, no. 10, (2017), p.3037–3046

Google Scholar

[13] Z. Qiu, Y. Zhang, P. Dong, S. Xia, and Y. Yao: Solid State Ion., vol. 307, (2017)

Google Scholar

[14] M. N. Obrovac, L. Zheng, and M. D. L. Garayt: Cell Rep. Phys. Sci., vol. 1, no. 6, (2020), p.100063

Google Scholar

[15] L. Zheng, J. C. Bennett, and M. N. Obrovac: J. Electrochem. Soc., vol. 167, no. 13, (2020), p.130536

Google Scholar

[16] R. Fantin et al.: Chem. Mater., vol. 33, no. 7, (2021), p.2624–2634

Google Scholar

[17] G. Cao et al.: RSC Adv., vol. 10, no. 17, (2020), p.9917, Mar. (2020)

Google Scholar

[18] S. Xia, Y. Zhang, P. Dong, and Y. Zhang: Eur. Phys. J. Appl. Phys., vol. 65, no. 1, (2014), Art. no. 1

Google Scholar

[19] N. Pereira et al.: J. Electrochem. Soc., vol. 152, (2005), pp. A114–A125

Google Scholar

[20] H.-J. Park, S.-J. Sim, B.-S. Jin, S.-H. Lee, and H.-S. Kim: Sci. Rep., vol. 12, no. 1, (2022), Art. no. 1

Google Scholar

[21] Y. Su et al.: Chin. J. Chem., vol. 39, no. 1, (2021), p.189–198

Google Scholar

[22] Y. Xia, J. Zheng, C. Wang, and M. Gu: Nano Energy, vol. 49, (2018), p.434–452

Google Scholar