Direct Regeneration of NMC622 Cathode Material from Spent Ev Li-Ion Batteries via Hydrothermal Relithiation

Article Preview

Abstract:

With the increasing demand for electric vehicles, there is a need to address the issues associated with the increasing number of waste Li-ion batteries. In this study, a facile hydrothermal relithiation method, followed by post-annealing, was explored to repair the structure, morphology, and composition of spent NMC622. Based on the XRD pattern, the regenerated NMC622 annealed at 800°C can be indexed similarly with that of pristine NMC622 without any observable impurities. It also showed less agglomeration, with a narrower particle size distribution than the as-recovered spent NMC622. The results suggest that a desirable structure and morphology have been successfully obtained after regeneration. Notably, the results from ICP-OES and XRF analyses further indicate that the Li content of regenerated NMC622 increased from 6.99 to 7.20 wt%, a value close to the theoretical Li composition (7.16%).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-73

Citation:

Online since:

June 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Jena, A. AlFantazi, and A. Mayyas: Energy Fues. Vol. 35 No. 22 (2021), p.18257

Google Scholar

[2] H. Gao, D. Tran, and Z. Chen: Curr. Opin. Electrochem. Vol. 31 (2022), p.100875

Google Scholar

[3] A. Pavlovskii, K. Pushnitsa, A. Kosenko, P. Novikov, and A. Popovich: Inorganics Vol. 10 No. 9 (2022), p.141

DOI: 10.3390/inorganics10090141

Google Scholar

[4] K. Turcheniuk, D. Bondarev, V. Singhal, and G. Yushin: Nature Vol. 559 (2018), p.467–470

DOI: 10.1038/d41586-018-05752-3

Google Scholar

[5] K. Richa, C. Babbitt, G. Gaustad, and X. Wang: Resour. Conserv. Recycl. Vol. 83 (2014), p.63–76

Google Scholar

[6] T. Or,  S. Gourley,  K. Kaliyappan,  A. Yu,  and Z. Chen: Carbon Energy Vol. 2 (2020), p.6–43

Google Scholar

[7] L. Gaines: One Earth Vol. 1 (2019), p.413–415

Google Scholar

[8] Y. Ji, E. Kpodzro, C. Jafvert, and F. Zhao: Clean Technol. Recycl. Vol. 1 No. 2 (2021), p.124–151

Google Scholar

[9] X. Yu, S. Yu, Z. Yang, H. Gao, P. Xu, G. Cai, S. Rose, C. Brooks, P. Liu, and Z. Chen: Energy Stor. Mater. Vol. 51 (2022), p.54–62

Google Scholar

[10] S. Sloop, L. Crandon, M. Allen, M. Lerner, H. Zhang, W. Sirisaksoontorn, L. Gaines, J. Kim, and M. Lee. Sustain. Mater. Technol. Vol. 22 (2019), e00113

DOI: 10.1016/j.susmat.2019.e00113

Google Scholar

[11] C. Garrido, R.B. Cervera: Advanced Materials Research Vol. 119 (2020), pp.38-42

Google Scholar

[12] C. Hanisch, T. Loellhoeffel, J. Diekmann, K.J. Markley, W. Haserieder, and A. Kwade: J. Cleaner Production Vol. 108 (2015), pp.301-311

DOI: 10.1016/j.jclepro.2015.08.026

Google Scholar

[13] S. Windisch-Kern, A. Holzer, L. Wiszniewski, H. Raupenstrauch: Metals Vol. 11 No. 11 (2021), p.1844

Google Scholar

[14] G. Jiang, Y. Zhang, Q. Meng, Y. Zhang, P. Dong, M. Zhang, and X. Yang: ACS Sustain. Chem. Eng. Vol. 8 No. 49 (2020), p.18138–147

Google Scholar