Manning Coefficient Effect on the Shallow Water Flow Equation

Article Preview

Abstract:

This work will seek to solve shallow water equations, using numerical integration methods, to solve partial differential equations (PDEs) and subsequently present a brief physical interpretation of the solutions. The derivation of the equations is demonstrated, along with the explanation of each physical quantity present. The discretization of non-conservative shallow water equations is carried out using the method of finite differences advanced in time and central in space (FTCS), in explicit form. With the deductions, different Manning coefficients will be addressed in the solutions, verifying their effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-25

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Garcia-Navarro et al., in: The shallow water equations and their application to realistic cases, Environmental Fluid Mechanics, (2019).

Google Scholar

[2] V. Caleffi, A. Valiani, A. Zanni in: Finite Volume Method for Simulating Extreme Flood Events in Natural Channels, Journal of Hydraulic Research, 41(2), 167-177 (2003).

DOI: 10.1080/00221680309499959

Google Scholar

[3] J. N. Eddy, in : An Introduction to the Finite Element Method, Third edition, McGraw-Hill, Paris (2006).

Google Scholar

[4] V. Ruas in :Hermite finite elements for second order boundary value problems with sharp gradient discontinuities, Journal of Computational and Applied Mathematics, 246, 234-242 (2013).

DOI: 10.1016/j.cam.2012.08.027

Google Scholar

[5] R. Kolman, M. Okrouhlík, A. Berezovski, D. Gabriel, J. Kopačka, J. Plešek in :B-spline based finite element method in one-dimensional discontinuous elastic wave propagation, Applied Mathematical Modelling, 46, 382-395 (2017).[6] C. Grossmann; H. Roos; M. Stynes in Numerical Treatment of Partial Differential Equations,Springer Science AND Business Media, (2007).

DOI: 10.1016/j.apm.2017.01.077

Google Scholar

[7] S. Kocaman, H. Ozmen-Cagatay in: Investigation of dam-break induced shock waves impact on a vertical wall, Journal of Hydrology, 525, 1-12 (2015).

DOI: 10.1016/j.jhydrol.2015.03.040

Google Scholar

[8] C. KUHBACHER. Shallow Water: Derivation and Applications. Alemanha: 2009.

Google Scholar

[9] W.D. Guo, J.S. Lai, G.F. Lin, F.Z. Lee, Y.C. Tan in : Finite-volume multi-stage scheme for advection-diffusion modeling in shallow water flows, Journal of Mechanics, 27, 415-430, (2011).

DOI: 10.1017/jmech.2011.44

Google Scholar

[10] C. S. Silva in: Inundações em Pelotas/RS: o uso de geoprocessamento no planejamento paisagístico e ambiental, Dissertação de Mestrado, Programa de Pós-Graduação em Arquitetura e Urbanismo, Faculdade de Arquitetura e Urbanismo, Universidade Federal de Santa Catarina, Florianópolis, Brasil, 196 páginas (2007).

DOI: 10.17127/got/2021.22.008

Google Scholar

[11] J.N. Reddy in: Introduction to the Finite Element Method, McGraw-Hill Science/Engineering/Math, Reino Unido (2005).

Google Scholar

[12] T. J. R. Hughes, D. W. K. Liu, T. K. Zimmermann in: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation, Reino Unido (2012).

Google Scholar

[13] R. L. Burden, J. D. Faires in: Análise Numérica. Cengage Learning (2008), Brasil.

Google Scholar