Application of Time Series in the Analysis of Physical-Chemical Data to Support the Management of Water Clarification Efficiency in a Water Treatment Plant

Article Preview

Abstract:

Abstract. Water is a natural and essential resource for life and must be preserved. Its potability is also vital for human survival. In this context, the turbidity parameter is a factor preponderant, as its presence can “protect” harmful microorganisms during the disinfection. Considering the extensive volume of data collected by Pelotas Autonomous Service of Sanitation at the Santa Bárbara Water Treatment Plant over the years, it was proposed to develop a methodology to support decision-making by managers, through data processing using statistical methods, machine learning and time series. Studies have shown that turbidity is an essential parameter in quality monitoring of the water andcan be inferred before the filtration stage from data collected throughout time. Furthermore, using data from the treatment plant itself offers the advantage of taking its peculiarities into account in the analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-46

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Guidelines for drinking-water quality: fourth edition incorporating the first addendun. Geneva: World Health Organization (2017).

Google Scholar

[2] G.R. Santos: Estudo de Clarificação de Água de Abastecimento Público e Otimização da Estação de Tratamento de Água. Dissertação (Mestrado em Tecnologia dos Processos Químicos e Bioquímicos) - Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro (2011).

DOI: 10.5753/ersirj.2018.4649

Google Scholar

[3] M. Libânio: Fundamentos de qualidade e tratamento de água, 3a ed. Campinas (2010).

Google Scholar

[4] P.N. Tan: Introduction to data mining, 2nd ed. New York (2019).

Google Scholar

[5] A. Netto: Python para Data Science e Machine Learning, 1a ed. Rio de Janeiro (2021).

Google Scholar

[6] J.F. Hair, W.C. Black, B.J. Babin, R.E. Anderson, R. Tatham: Multivariate data analysis, Uppersaddle River (2006).

Google Scholar

[7] S.A. Mingoti: Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada, 4a ed. Belo Horizonte (2020).

Google Scholar

[8] J. Schmuller: Projetos em R para leigos, 1a ed. Rio de Janeiro (2018).

Google Scholar

[9] P.F. Drucker: O melhor de Peter Drucker: a administração, Vol. 2. NBL Editora (2001).

Google Scholar

[10] A. Nielsen: Análise Práticas de Séries Temporais, 1a ed. Rio de Janeiro (2021).

Google Scholar