[1]
Koivisto, A.J., et al., Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating. Journal of Hazardous Materials, 2018. 341: pp.218-227.
DOI: 10.1016/j.jhazmat.2017.07.045
Google Scholar
[2]
Varsha, M., P.S. Kumar, and B.S. Rathi, A review on recent trends in the removal of emerging contaminants from aquatic environment using low-cost adsorbents. Chemosphere, 2022. 287: p.132270.
DOI: 10.1016/j.chemosphere.2021.132270
Google Scholar
[3]
Yang, R., et al., ZnIn2S4‐Based Photocatalysts for Energy and Environmental Applications. Small Methods, 2021. 5(10): p.2100887.
Google Scholar
[4]
Wang, M., et al., Monolayer porphyrin assembled SPSf/PES membrane reactor for degradation of dyes under visible light irradiation coupling with continuous filtration✰. Journal of the Taiwan Institute of Chemical Engineers, 2020. 109: pp.62-70.
DOI: 10.1016/j.jtice.2020.02.013
Google Scholar
[5]
Shi, X. and H. Wang, Self-Support Nanoarrays as Electrocatalysts for Energy Conversion Applications, in Electrochemical Transformation of Renewable Compounds. 2022, CRC Press. pp.195-236.
DOI: 10.1201/9780429326783-8
Google Scholar
[6]
Madkhali, N., et al., Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials. Results in Engineering, 2023. 17: p.100920.
DOI: 10.1016/j.rineng.2023.100920
Google Scholar
[7]
Gogotsi, Y. and B. Anasori, The Rise of MXenes. ACS Nano, 2019. 13(8): pp.8491-8494.
DOI: 10.1021/acsnano.9b06394
Google Scholar
[8]
Na-Phattalung, S., et al., Band gap narrowing of TiO2 nanoparticles: A passivated Co-doping approach for enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, 2022. 162: p.110503.
DOI: 10.1016/j.jpcs.2021.110503
Google Scholar
[9]
Rasheed, T., et al., Two dimensional MXenes as emerging paradigm for adsorptive removal of toxic metallic pollutants from wastewater. Chemosphere, 2022. 287: p.132319.
DOI: 10.1016/j.chemosphere.2021.132319
Google Scholar
[10]
Solangi, N.H., et al., MXene as emerging material for photocatalytic degradation of environmental pollutants. Coordination Chemistry Reviews, 2023. 477: p.214965.
DOI: 10.1016/j.ccr.2022.214965
Google Scholar
[11]
Biswal, L., et al., Interfacial Solid-State Mediator-Based Z-Scheme Heterojunction TiO2@ Ti3C2/MgIn2S4 Microflower for Efficient Photocatalytic Pharmaceutical Micropollutant Degradation and Hydrogen Generation: Stability, Kinetics, and Mechanistic Insights. ACS Applied Energy Materials, 2023. 6(3): pp.2081-2096.
DOI: 10.1021/acsaem.2c04144.s001
Google Scholar
[12]
Sreedhar, A. and J.-S. Noh, Recent advances in partially and completely derived 2D Ti3C2 MXene based TiO2 nanocomposites towards photocatalytic applications: A review. Solar Energy, 2021. 222: pp.48-73.
DOI: 10.1016/j.solener.2021.05.010
Google Scholar
[13]
Wojciechowski, T., et al., Ti2C MXene Modified with Ceramic Oxide and Noble Metal Nanoparticles: Synthesis, Morphostructural Properties, and High Photocatalytic Activity. Inorganic Chemistry, 2019. 58(11): pp.7602-7614.
DOI: 10.1021/acs.inorgchem.9b01015.s001
Google Scholar
[14]
Naguib, M., M.W. Barsoum, and Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Advanced Materials, 2021. 33(39): p.2103393.
DOI: 10.1002/adma.202103393
Google Scholar
[15]
Khan, A.A., M. Tahir, and A. Bafaqeer, Constructing a Stable 2D Layered Ti3C2 MXene Cocatalyst-Assisted TiO2/g-C3N4/Ti3C2 Heterojunction for Tailoring Photocatalytic Bireforming of Methane under Visible Light. Energy & Fuels, 2020. 34(8): pp.9810-9828.
DOI: 10.1021/acs.energyfuels.0c01354
Google Scholar
[16]
Tareen, A.K., et al., Recent advances in MXenes: new horizons in biomedical technologies. Materials Today Chemistry, 2022. 26: p.101205.
DOI: 10.1016/j.mtchem.2022.101205
Google Scholar
[17]
Tahir, M., et al., Titanium Carbide MXene Nanostructures as Catalysts and Cocatalysts for Photocatalytic Fuel Production: A Review. ACS Applied Nano Materials, 2022. 5(1): pp.18-54.
DOI: 10.1021/acsanm.1c03112
Google Scholar
[18]
Ahmadi, A., et al., Foulant layer degradation of dye in Photocatalytic Membrane Reactor (PMR) containing immobilized and suspended NH2-MIL125(Ti) MOF led to water flux recovery. Journal of Environmental Chemical Engineering, 2022. 10(1): p.106999.
DOI: 10.1016/j.jece.2021.106999
Google Scholar
[19]
Mahamud, M., et al., Zeolite supported CdS/TiO2/CeO2 composite: Synthesis, characterization and photocatalytic activity for methylene blue dye degradation. Materials Research Bulletin, 2023. 161: p.112176.
DOI: 10.1016/j.materresbull.2023.112176
Google Scholar
[20]
Qin, Y.L., et al., Photocatalytic and adsorption property of ZnS–TiO2/RGO ternary composites for methylene blue degradation. Adsorption Science & Technology, 2018. 37(9-10): pp.764-776.
DOI: 10.1177/0263617418810932
Google Scholar
[21]
Han, S., et al., High-performance polyethylenimine-functionalized lignin/silica porous composite microsphere for the removal of hexavalent chromium, phosphate and Congo red from aqueous solutions. Industrial Crops and Products, 2023. 194: p.116289.
DOI: 10.1016/j.indcrop.2023.116289
Google Scholar
[22]
Lian, X., et al., High vis-light photocatalytic property of g-C3N4 on four pollutants (RhB, MB, TC-HCl and P-Nitrophenol). Current Applied Physics, 2022. 39: pp.196-204.
DOI: 10.1016/j.cap.2022.04.020
Google Scholar
[23]
Mustafa, F.S. and K.H. Hama Aziz, Heterogeneous catalytic activation of persulfate for the removal of rhodamine B and diclofenac pollutants from water using iron-impregnated biochar derived from the waste of black seed pomace. Process Safety and Environmental Protection, 2023. 170: pp.436-448.
DOI: 10.1016/j.psep.2022.12.030
Google Scholar
[24]
Beleuk à Moungam, L.M., et al., Efficiency of volcanic ash-based porous geopolymers for the removal of Pb2+, Cd2+ and Hg2+ from aqueous solution. Cleaner Materials, 2022. 5: p.100106.
DOI: 10.1016/j.clema.2022.100106
Google Scholar
[25]
Abdel-Khalek, M.H., et al., Synthesis of mesoporous Pt/TiO2 nanoparticles by incipient wetness route for photocatalytic degradation of rhodamine B and methyl orange dyes under UV and sun light radiations. Materials Science for Energy Technologies, 2022. 5: pp.334-343.
DOI: 10.1016/j.mset.2022.08.001
Google Scholar
[26]
Gong, J., et al., Catalytic wet oxidation of N,N-dimethyl formamide over ruthenium supported on CeO2 and Ce0.7Zr0.3O2 catalysts. Journal of Rare Earths, 2019. 37(3): pp.265-272.
DOI: 10.1016/j.jre.2018.08.003
Google Scholar
[27]
Doyle, S., et al., A rapid antimicrobial photodynamic water treatment strategy utilizing a xanthene dye with subsequent removal by Goethite Nanoparticles. Chemosphere, 2021. 280: p.130764.
DOI: 10.1016/j.chemosphere.2021.130764
Google Scholar
[28]
Singh, V.V., et al., Chapter 2 - Metal–organic-framework composite-based rapid self-detoxifying smart textile filters for chemical warfare agents, in Sensing of Deadly Toxic Chemical Warfare Agents, Nerve Agent Simulants, and their Toxicological Aspects, S. Das, S. Thomas, and P.P. Das, Editors. 2023, Elsevier. pp.33-79.
DOI: 10.1016/b978-0-323-90553-4.00027-5
Google Scholar
[29]
Nasir, A.M., et al., Recent progress on fabrication and application of electrospun nanofibrous photocatalytic membranes for wastewater treatment: A review. Journal of Water Process Engineering, 2021. 40: p.101878.
DOI: 10.1016/j.jwpe.2020.101878
Google Scholar
[30]
Khan, A. and M. Tahir, Well-designed 2D/2D Ti3C2TA/R MXene coupled g-C3N4 heterojunction with in-situ growth of anatase/rutile TiO2 nucleates for boosting photocatalytic dry-reforming of methane (DRM) for syngas production under visible light. Applied Catalysis B Environmental, 2020. 285.
DOI: 10.1016/j.apcatb.2020.119777
Google Scholar
[31]
Kamaludin, R., et al., Incorporation of N-doped TiO2 into dual layer hollow fiber (DLHF) membrane for visible light-driven photocatalytic removal of reactive black 5. Polymer Testing, 2019. 78: p.105939.
DOI: 10.1016/j.polymertesting.2019.105939
Google Scholar
[32]
Marcelino, R.B.P., et al., Novel and versatile TiO2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water. Chemical Engineering Journal, 2019. 370: pp.1251-1261.
DOI: 10.1016/j.cej.2019.03.284
Google Scholar
[33]
Abdel-Mottaleb, M.M., et al., High performance of PAN/GO-ZnO composite nanofibers for photocatalytic degradation under visible irradiation. Journal of the Mechanical Behavior of Biomedical Materials, 2019. 96: pp.118-124.
DOI: 10.1016/j.jmbbm.2019.04.040
Google Scholar
[34]
Zhang, Y., et al., Construction of stable Ti3+-TiO2 photocatalytic membrane for enhanced photoactivity and emulsion separation. Journal of Membrane Science, 2021. 618: p.118748.
DOI: 10.1016/j.memsci.2020.118748
Google Scholar
[35]
Ye, Y., et al., Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species. Applied Catalysis B: Environmental, 2018. 220: pp.171-181.
DOI: 10.1016/j.apcatb.2017.08.040
Google Scholar
[36]
Riaz, S. and S.-J. Park, An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. Journal of industrial and engineering chemistry, 2020. 84: pp.23-41.
DOI: 10.1016/j.jiec.2019.12.021
Google Scholar
[37]
Marcelino, R.B.P., Application of TiO2 thin films coated on pet by high power impulse magnetron sputtering for water treatment. 2018.
Google Scholar
[38]
Blanco, M., et al., TiO2-Doped Electrospun Nanofibrous Membrane for Photocatalytic Water Treatment. Polymers, 2019. 11(5): p.747.
Google Scholar
[39]
Otitoju, T.A., et al., RETRACTED: Polyethersulfone- CaCu3Ti4O12 hollow fiber membrane with enhanced photocatalytical activity and water permeability. Journal of Water Process Engineering, 2020. 33.
DOI: 10.1016/j.jwpe.2019.101072
Google Scholar
[40]
Zhou, Y., et al., Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 2019. 252: pp.352-365.
DOI: 10.1016/j.envpol.2019.05.072
Google Scholar
[41]
Abdel-Mottaleb, M., et al., Removal of hexavalent chromium by electrospun PAN/GO decorated ZnO. Journal of the Mechanical Behavior of Biomedical Materials, 2019. 98: pp.205-212.
DOI: 10.1016/j.jmbbm.2019.06.025
Google Scholar
[42]
Li, Z., et al., Synthesis of Ti3C2/TiO2 heterostructure by microwave heating with high electrochemical performance. Materials Research Express, 2019. 6(6): p.065056.
Google Scholar
[43]
Ali Khan, A. and M. Tahir, Constructing S-Scheme Heterojunction of CoAlLa-LDH/g-C3N4 through Monolayer Ti3C2-MXene to Promote Photocatalytic CO2 Re-forming of Methane to Solar Fuels. ACS Applied Energy Materials, 2022. 5(1): pp.784-806.
DOI: 10.1021/acsaem.1c03266
Google Scholar
[44]
Huang, K., C. Li, and X. Meng, In-situ construction of ternary Ti3C2 MXene@ TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020. 580: pp.669-680.
DOI: 10.1016/j.jcis.2020.07.044
Google Scholar
[45]
Murali, G., et al., A review on MXene synthesis, stability, and photocatalytic applications. ACS nano, 2022. 16(9): pp.13370-13429.
DOI: 10.1021/acsnano.2c04750
Google Scholar
[46]
Huang, W., et al., Recent advances in functional 2D MXene‐based nanostructures for next‐generation devices. Advanced Functional Materials, 2020. 30(49): p.2005223.
DOI: 10.1002/adfm.202005223
Google Scholar
[47]
Cai, T., et al., Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Applied Catalysis B: Environmental, 2018. 239: pp.545-554.
DOI: 10.1016/j.apcatb.2018.08.053
Google Scholar
[48]
Zhong, Q., Y. Li, and G. Zhang, Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chemical Engineering Journal, 2021. 409: p.128099.
DOI: 10.1016/j.cej.2020.128099
Google Scholar
[49]
Li, Y.-D., et al., Localization control of carbon nanotubes in immiscible polylactide/vulcanized epoxidized soybean oil blends. Composites Communications, 2019. 11: pp.6-11.
DOI: 10.1016/j.coco.2018.11.001
Google Scholar
[50]
Hassani, A., et al., Z-scheme photocatalysts for visible-light-driven pollutants degradation: a review on recent advancements. Current Opinion in Solid State and Materials Science, 2021. 25(5): p.100941.
DOI: 10.1016/j.cossms.2021.100941
Google Scholar
[51]
Zhang, J., C. Xing, and F. Shi, MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2020. 45(11): pp.6291-6301.
DOI: 10.1016/j.ijhydene.2019.12.109
Google Scholar
[52]
Li, X., et al., Applications of MXene (Ti 3 C 2 T x) in photocatalysis: A review. Materials Advances, 2021. 2(5): pp.1570-1594.
Google Scholar
[53]
Tahir, M., Binary Ni2P/Ti3C2 Multilayer Cocatalyst Anchored TiO2 Nanocomposite with Etchant/Oxidation Grown TiO2 NPs for Enhancing Photocatalytic H2 Production. Energy & Fuels, 2021. 35(17): pp.14197-14211.
DOI: 10.1021/acs.energyfuels.1c01340
Google Scholar
[54]
Humayun, M., C. Wang, and W. Luo, Recent progress in the synthesis and applications of composite photocatalysts: a critical review. Small Methods, 2022. 6(2): p.2101395.
DOI: 10.1002/smtd.202101395
Google Scholar
[55]
Cao, F., et al., Recent advances in oxidation stable chemistry of 2D MXenes. Advanced Materials, 2022. 34(13): p.2107554.
Google Scholar
[56]
Bhat, A., et al., Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. npj 2D Materials and Applications, 2021. 5(1): p.61.
DOI: 10.1038/s41699-021-00239-8
Google Scholar
[57]
Li, Y., et al., Chlorophyll derivatives/MXene hybrids for photocatalytic hydrogen evolution: Dependence of performance on the central coordinating metals. International Journal of Hydrogen Energy, 2022. 47(6): pp.3824-3833.
DOI: 10.1016/j.ijhydene.2021.11.026
Google Scholar
[58]
Ahmad, I., et al., Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Advances in Colloid and Interface Science, 2023. 311: p.102830.
DOI: 10.1016/j.cis.2022.102830
Google Scholar
[59]
Lee, D.-E., et al., An S-scheme heterointerface-engineered high-performance ternary NiAl-LDH@TiO2/Ti3C2 MXene photocatalytic system for solar-powered CO2 reduction to produce energy-rich fuels. Chemical Engineering Journal, 2024. 480: p.148227.
DOI: 10.1016/j.cej.2023.148227
Google Scholar
[60]
Wang, H., et al., A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chinese Journal of Catalysis, 2022. 43(2): pp.178-214.
DOI: 10.1016/s1872-2067(21)63910-4
Google Scholar
[61]
Medina-Molina, C. and M. de la Sierra Rey-Tienda, The transition towards the implementation of sustainable mobility. Looking for generalization of sustainable mobility in different territories by the application of QCA. Sustainable Technology and Entrepreneurship, 2022. 1(2): p.100015.
DOI: 10.1016/j.stae.2022.100015
Google Scholar
[62]
Tahir, M., et al., Recent advances in titanium carbide MXene-based nanotextures with influential effect of synthesis parameters for solar CO2 reduction and H2 production: A critical review. Journal of Energy Chemistry, 2023. 76: pp.295-331.
DOI: 10.1016/j.jechem.2022.09.046
Google Scholar
[63]
Liang, C., et al., Insights into the impact of interlayer spacing on MXene-based electrodes for supercapacitors: A review. Journal of Energy Storage, 2023. 65: p.107341.
DOI: 10.1016/j.est.2023.107341
Google Scholar
[64]
Naz, T., et al., A facile approach to synthesize ZnO-decorated titanium carbide nanoarchitectures to boost up the photodegradation performance. Ceramics International, 2021. 47(23): pp.33454-33462.
DOI: 10.1016/j.ceramint.2021.08.252
Google Scholar
[65]
Gao, W., et al., In situ modification of cobalt on MXene/TiO2 as composite photocatalyst for efficient nitrogen fixation. Journal of Colloid and Interface Science, 2021. 585: pp.20-29.
DOI: 10.1016/j.jcis.2020.11.064
Google Scholar
[66]
Baig, N., I. Kammakakam, and W. Falath, Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021. 2(6): pp.1821-1871.
DOI: 10.1039/d0ma00807a
Google Scholar
[67]
Hou, T., et al., Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Applied Catalysis B: Environmental, 2020. 273: p.119072.
DOI: 10.1016/j.apcatb.2020.119072
Google Scholar
[68]
Ambade, S.B., et al., Interactions of Ti3C2 MXene with Aqueous Zwitterionic Biological Buffers: Implications for Applications in Biological Systems. ACS Applied Nano Materials, 2023. 6(6): pp.4898-4909.
DOI: 10.1021/acsanm.3c00666
Google Scholar