Tilted Dendritic Growth Dynamics and Dendrite to Degenerate Seaweed Transition in Directional Solidification: Insights from Phase-Field Simulations

Article Preview

Abstract:

In this paper, we review our results from phase field simulations of tilted dendritic growth dynamics and dendrite to seaweed transition in directional solidification of a dilute alloy. We focus on growth direction selection, stability range and primary spacing selection, and degenerate seaweed-to-tilted dendrite transition in directional solidification of non-axially orientated crystals. For growth direction selection, the DGP law (Phys. Rev. E, 78 (2008) 011605) was modified through take the anisotropic strength and pulling velocity into account. We confirm that the DGP law is only validated in lower pulling velocity. For the stability range and primary spacing selection, we found that the lower limit of primary spacing is irrelative to the misorientation angle but the upper limit is nonlinear with respect to the misorientation angle. Moreover, predicted results confirm that the power law relationship with the orientation correction by Gandin et al. (Metall. Mater. Trans. A. 27A (1996) 2727-2739) should be a universal scaling law for primary spacing selection. For the seaweed-to-dendrite transition, we found that the tip-splitting instability in degenerate seaweed growth dynamics is related to the M-S instability dynamics, and this transition originates from the compromise in competition between two dominant mechanisms, i.e., the macroscopic thermal field and the microscopic interfacial energy anisotropy.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 15)

Pages:

128-153

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. S. Langer, Instabilities and pattern formation in crystal growth, Rev. of Mod. Phys. 52 (1980) 1-28.

Google Scholar

[2] J. S. Langer, Dendrites, viscous fingers, and the theory of pattern formation, Sci. 243 (1989) 1150.

DOI: 10.1126/science.243.4895.1150

Google Scholar

[3] P. Pelcé, Dynamics of Curved Fronts, Academic Press, Boston,(1988).

Google Scholar

[4] E. Ben-Jacob, and P. Garik, The formation of patterns in non-equilibrium growth, Nat. 343 (1990) 523-530.

DOI: 10.1038/343523a0

Google Scholar

[5] W. Kurz, D. Fisher, Fundamentals of Solidification, Trans Tech Publications, (1998).

Google Scholar

[6] J. Dantzig, M. Rappaz, Solidification, EPFL Press, Lausanne, Swizerland, (2009).

Google Scholar

[7] V. Fleury, J. F. Gouyet, and M. Léonetti, Branching in Nature. Springer, Berlin Heidelberg, (2001).

Google Scholar

[8] A. Karma, D. Tourret, Atomistic to continuum modeling of solidification microstructures, Curr. Opin. Solid State Mater. Sci., 20 (2016) 25-36.

DOI: 10.1016/j.cossms.2015.09.001

Google Scholar

[9] Y. Couder, J. Maurer, R. González-Cinca, et al. Side-branch growth in two-dimensional dendrites. I. Experiments. Phys. Rev. E, 71 (2005) 031602.

DOI: 10.1103/physreve.71.031602

Google Scholar

[10] A. J. Melendez, C. Beckermann, Measurements of dendrite tip growth and sidebranching in succinonitrile–acetone alloys, J Cryst. Growth, 340 (2012) 175-189.

DOI: 10.1016/j.jcrysgro.2011.12.010

Google Scholar

[10] K.G. Libbrecht, Physical Dynamics of Ice Crystal Growth, Annu. Rev. Mater. Res. 47 (2017) 271-295.

DOI: 10.1146/annurev-matsci-070616-124135

Google Scholar

[11] G. Demange, H. Zapolsky, R. Patte, et al., A phase field model for snow crystal growth in three dimensions, Npj Comp. Mater. 3 (2017) 15.

DOI: 10.1038/s41524-017-0015-1

Google Scholar

[12] Information on http://www.snowcrystals.com.

Google Scholar

[13] T. Yang, Y. Han, J. Li. Manipulating silver dendritic structures via diffusion and reaction, Chem. Engin. Sci. 138 (2015) 457-464.

DOI: 10.1016/j.ces.2015.08.017

Google Scholar

[14] H. Wang, Y. Han, J. Li. Dominant Role of Compromise between Diffusion and Reaction in the Formation of Snow-Shaped Vaterite. Cryst. Growth Des., 13 (2013) 1820-1825.

DOI: 10.1021/cg301241s

Google Scholar

[15] H. Thomé, M. Rabaud, V. Hakim, et al. The Saffman–Taylor instability: From the linear to the circular geometry, Phys. Fluids A, 1 (1989) 224-240.

DOI: 10.1063/1.857493

Google Scholar

[16] G.P. Ivantsov. Temperature field around spheroidal, cylindrical, and acicular crystal growing in a supercooled melt, Dokl. Akad.Nauk. SSSR 58 (1947)567.

DOI: 10.1016/b978-0-08-092523-3.50026-5

Google Scholar

[17] M.E. Glicksman, R. J. Schaefer, J.D. Ayers. Dendritic growth-A test of theory. Metall. Trans. A, 7 (1976) 1747-1759.

Google Scholar

[18] Y. Saito, Statistical Physics of Crystal Growth, World Scientific, New Jersey, (1996).

Google Scholar

[19] E. Brener, H. Müllerkrumbhaar, D. Temkin. Structure formation and the morphology diagram of possible structures in two-dimensional diffusional growth. Phys. Rev. E, 54 (1996) 2714-2722.

DOI: 10.1103/physreve.54.2714

Google Scholar

[20] H.M. Singer, I. Singer-Loginova, J.H. Bilgram, et al. Morphology diagram of thermal dendritic solidification by means of phase-field models in two and three dimensions. J. Cryst. Growth. 296 (2006) 58-68.

DOI: 10.1016/j.jcrysgro.2006.07.033

Google Scholar

[21] T. Ihle. Competition between kinetic and surface tension anisotropy in dendritic growth. Eur. Phys. J. B 16 (2000) 337–344.

DOI: 10.1007/pl00011060

Google Scholar

[22] R. Trivedi, W. Kurz. Solidification microstructures: A conceptual approach. Acta Metall. Mater, 42 (1994)15-23.

Google Scholar

[23] M. Asta, C. Beckermann, A. Karma, et al. Solidification microstructures and solid-state parallels: Recent developments, future directions. Acta Mater., 57 (2009) 941-971.

DOI: 10.1016/j.actamat.2008.10.020

Google Scholar

[24] A. Barbieri and J. Langer. Predictions of dendritic growth rates in the linearized solvability theory. Phys. Rev. A 39 (1989) 5314–5325.

DOI: 10.1103/physreva.39.5314

Google Scholar

[25] A. M. Ben and E. Brener. Theory of pattern selection in three-dimensional nonaxisymmetric dendritic growth. Phys. Rev. Lett. 71 (1993) 589.

DOI: 10.1103/physrevlett.71.589

Google Scholar

[26] M.H. Burden, J.D. Hunt. Cellular and dendritic growth. I. J. Cryst. Growth 22 (1974) 99-108.

Google Scholar

[27] W. Kurz, D.J. Fisher. Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 29 (1981) 11-20.

DOI: 10.1016/0001-6160(81)90082-1

Google Scholar

[28] M. Greenwood, M. Haataja, and N. Provatas. Crossover Scaling of Wavelength Selection in Directional Solidification of Binary Alloys. Phys. Rev. Lett. 93 (2004) 246101.

DOI: 10.1103/physrevlett.93.246101

Google Scholar

[29] J. Warren and J. Langer. Stability of dendritic arrays. Phys. Rev. A 42 (1990) 3518–3525.

Google Scholar

[30] W. Huang, X. Geng, Y. Zhou. Primary spacing selection of constrained dendritic growth. J Cryst. Growth 134 (1993) 105–115.

Google Scholar

[31] W. Losert, B. Shi, H. Cummins, et al. Spatial Period-Doubling Instability of Dendritic Arrays in Directional Solidification. Phys. Rev. Lett. 77 (1996) 889.

DOI: 10.1103/physrevlett.77.889

Google Scholar

[32] W. Losert, B. Q. Shi, H. Z. Cummins. Evolution of dendritic patterns during alloy solidification: onset of the initial instability. Proc. Natl. Acad. Sci. USA, 95 (1998) 431.

DOI: 10.1073/pnas.95.2.431

Google Scholar

[33] A. Borisov, S. Fedorov, V. Maslov. Growth of succinonitrile dendrites in different crystallographicdirections. J Cryst. Growth, 112 (1991) 463-466.

DOI: 10.1016/0022-0248(91)90324-x

Google Scholar

[34] R. Trivedi, V. Seetharaman, M. Eshelman. The effects of interface kinetic anisotropy on the growth direction ofcellular microstructures. Metall. Trans. A. 22A (1991) 585-593.

DOI: 10.1007/bf02656826

Google Scholar

[35] T. Okada, Y. Saito. Simulation of unidirectional solidification with a tilted crystalline axis. Phys.Rev.R, 54 (1996) 650-655.

DOI: 10.1103/physreve.54.650

Google Scholar

[36] S. Akamatsu, T. Ihle. Similarity law for the tilt angle of dendrites in directional solidification of non-axially-oriented crystals. Phys. Rev. E, 56 (1997) 4479-4485.

DOI: 10.1103/physreve.56.4479

Google Scholar

[37] S. Akamatsu, G. Faivre. Anisotropy-driven dynamics of cellular fronts in directional solidification in thin samples. Phys. Rev. E, 58 (1998) 3302-3315.

DOI: 10.1103/physreve.58.3302

Google Scholar

[38] G. L. Ding, S. N. Tewari. Dendritic morphologies of directionally solidified single crystals along different crystallographic orientations. J. Cryst. Growth, 236 (2002) 420-428.

DOI: 10.1016/s0022-0248(01)01787-0

Google Scholar

[39] D. Walton, B. Chalmers. The origin of the preferred orientation in the columnar zone of ingots. Trans. Metall. Soc. AIME, 215 (1959) 447–457.

Google Scholar

[40] N. D'Souza, M. G. Ardakani, A. Wagner, et al. Morphological aspects of competitive grain growth during directional solidification of a nickel-base superalloy, CMSX4. J. Mater. Sci., 37 (2002) 481-487.

Google Scholar

[41] Y.Z. Zhou, A. Volek, N.R. Green NR. Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy. Acta Mater. 56 (2008) 2631-2637.

DOI: 10.1016/j.actamat.2008.02.022

Google Scholar

[42] J. Li, Z. Wang, Y. Wang, J. Wang. Phase-field study of competitive dendritic growth of converging grains duringdirectional solidification. Acta Mater., 60 (2012) 1478-1493.

DOI: 10.1016/j.actamat.2011.11.037

Google Scholar

[43] T. Takaki, M. Ohno, T. Shimokawabe, et al. Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal. Acta Mater. 81 (2014) 272–283.

DOI: 10.1016/j.actamat.2014.08.035

Google Scholar

[44] D. Tourret, Y. Song, A. Clarke, A. Karma. Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study. Acta Mater. 122 (2017) 220-235.

DOI: 10.1016/j.actamat.2016.09.055

Google Scholar

[45] J. Deschamps, M. Georgelin, A. Pocheau. Growth directions of microstructures in directional solidification of crystalline materials. Phys. Rev. E, 78 (2008) 011605.

DOI: 10.1103/physreve.78.011605

Google Scholar

[46] J. Ghmadh, J.-M. Debierre, J. Deschamps, M. Georgelin, R. Guérin, A. Pocheau. Directional solidification of inclined structures in thin samples. Acta Mater. 74 (2014) 255-267.

DOI: 10.1016/j.actamat.2014.04.023

Google Scholar

[47] Z. Wang, J. Li, J. Wang. Predicting growth direction of tilted dendritic arrays during directional solidification. J. Crys. Growth 328 (2011) 108-113.

DOI: 10.1016/j.jcrysgro.2011.06.021

Google Scholar

[48] C. Rios, R. Caram. Primary dendrite spacing as a function of directional solidification parameters in an Al-Si-Cu alloy. J. Crys. Growth 174 (1997) 65-69.

DOI: 10.1016/s0022-0248(96)01061-5

Google Scholar

[49] D. Ma, P. Sahm. Primary spacing in directional solidification. Metall. Mater. Trans. A, 29 (1998) 1113-1119.

DOI: 10.1007/s11661-998-1020-2

Google Scholar

[50] D. Ma. Modeling of primary spacing selection in dendrite arrays during directional solidification. Metall. Mater. Trans. B 33 (2002) 223-233.

DOI: 10.1007/s11663-002-0007-4

Google Scholar

[51] D. Ma. Response of primary dendrite spacing to varying temperature gradient during directional solidification. Metall. Mater. Trans. B 35 (2004) 735-742.

DOI: 10.1007/s11663-004-0013-9

Google Scholar

[52] S. Tewari, Y. Weng, G. Ding, et al. Cellular array morphology during directional solidification. Metall. Mater. Trans. A, 33 (2002) 1229-1243.

DOI: 10.1007/s11661-002-0224-0

Google Scholar

[53] H. Chen, Y. Chen, X. Wu, et al. History dependence of primary dendrite spacing during directional solidification of binary metallic alloys and interdendritic convection. J. Crys. Growth, 253 (2003) 413-423.

DOI: 10.1016/s0022-0248(03)00945-x

Google Scholar

[54] J. Spinelli, K. Cruz, M. Canté, et al. Primary dendrite arm spacing during transient directional solidification of Al alloys with low redistribution coefficients. Philos. Mag. Lett. 89(2009) 779-786.

DOI: 10.1080/09500830903292338

Google Scholar

[55] Z. Min, J. Shen, Z. Feng, et al. Effects of melt flow on the primary dendrite spacing of Pb–Sn binary alloy during directional solidification. J. Crys. Growth 320 ( 2011) 41-45.

DOI: 10.1016/j.jcrysgro.2011.01.013

Google Scholar

[56] Z. Wang, J. Wang, J. Li, et al. Quantitative investigation of cellular growth in directional solidification by phase-field simulation. Phys. Rev. E 84 (2011) 041604.

DOI: 10.1103/physreve.84.041604

Google Scholar

[57] Z. Wang, J. Li, J. Wang, Y. Zhou. Phase field modeling the selection mechanism of primary dendritic spacing in directional solidification. Acta Mater. 60 (2012)1957-(1964).

DOI: 10.1016/j.actamat.2011.12.029

Google Scholar

[58] Y. Shibuta, M. Ohno, T. Takaki. Solidification in a Supercomputer: From Crystal Nuclei to Dendrite Assemblages. JOM 67 (2015) 1793-1804.

DOI: 10.1007/s11837-015-1452-2

Google Scholar

[59] T. Takaki, S. Sakane, M. Ohno M, et al. Primary arm array during directional solidification of a single-crystal binary alloy: Large-scale phase-field study. Acta Mater. 118 (2016) 230-243.

DOI: 10.1016/j.actamat.2016.07.049

Google Scholar

[60] A. Clarke, D. Tourret, Y. Song, et al. Microstructure selection in thin-sample directional solidification of an Al-Cu alloy: in situ X-ray imaging and phase-field simulations. Acta Mater. 129 (2017) 203-216.

DOI: 10.1016/j.actamat.2017.02.047

Google Scholar

[61] J.D. Hunt, Solidification and Casting of Metals, The Metals Society, London, (1979).

Google Scholar

[62] W. Kurz, D. J. Fisher. Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 29 (1981)11-20.

DOI: 10.1016/0001-6160(81)90082-1

Google Scholar

[63] R. N.Grugel, Y. Zhou. Primary dendritie spacing and the effect of off-axis heat flow, Metall. Trans. A. 20A (1989) 969-973.

DOI: 10.1007/bf02651662

Google Scholar

[64] Ch.-A. Gandin, M. Eshelman and R. Trivedi. Orientation dependence of primary spacing. Metall. Mater. Trans. A. 27A (1996) 2727-2739.

DOI: 10.1007/bf02652367

Google Scholar

[65] D. Tourret, A. Karma. Growth competition of columnar dendritic grains: A phase-field study. Acta Mater. 82 (2015) 64-83.

DOI: 10.1016/j.actamat.2014.08.049

Google Scholar

[66] M. A. Chopra, M.E. Glicksman, N.B. Singh. Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point. J Cryst. Growth. 92 (1988) 543-546.

DOI: 10.1016/0022-0248(88)90039-5

Google Scholar

[67] U. Bisang, J.H. Bilgram. Shape of the tip and the formation of sidebranches of xenon dendrites. Phys. Rev. E. 75 (1996) 5309-5326.

DOI: 10.1103/physreve.54.5309

Google Scholar

[68] Q. Li, C. Beckermann. Scaling behavior of three-dimensional dendrites. Phys. Rev. E 57 (1998) 3176-3188.

DOI: 10.1103/physreve.57.3176

Google Scholar

[69] D. P. Corrigan, M.B. Koss, J. C. Lacombe, et al. Experimental measurements of sidebranching in thermal dendrites under terrestrial-gravity and microgravity conditions. Phys. Rev. E 60 (1999) 7217.

DOI: 10.1103/physreve.60.7217

Google Scholar

[70] A. J. Melendez, C. Beckermann. Measurements of dendrite tip growth and sidebranching in succinonitrile–acetone alloys. J Cryst. Growth 340 (2012) 175-189.

DOI: 10.1016/j.jcrysgro.2011.12.010

Google Scholar

[71] E. Brener and D. Temkin. Noise-induced sidebranching in the three-dimensional nonaxisymmetric dendritic growth. Phys. Rev. E 51(1995) 351.

DOI: 10.1103/physreve.51.351

Google Scholar

[72] Y. Couder, J. Maurer, R. González-Cinca, et al. Side-branch growth in two-dimensional dendrites. I. Experiments. Phys. Rev. E 71 (2005) 031602.

DOI: 10.1103/physreve.71.031602

Google Scholar

[73] B. Echebarria, A. Karma, S. Gurevich. Onset of sidebranching in directional solidification. Phys. Rev. E 81(2010):275-282.

DOI: 10.1103/physreve.81.021608

Google Scholar

[74] B. Utter, E. Bodenschatz. Dynamics of low anisotropy morphologies in directional solidification. Phys. Rev. E 66 (2002) 051604.

DOI: 10.1103/physreve.66.051604

Google Scholar

[75] B. Utter, R. Ragnarsson, E. Bodenschatz. Alternating tip splitting in directional solidification. Phys. Rev. Lett. 86 (2001) 4604.

DOI: 10.1103/physrevlett.86.4604

Google Scholar

[76] N. Provatas, Q. Wang, M. Haataja, et al. Seaweed to dendrite transition in directional solidification.. Phys. Rev. Lett. 91 (2003) 155502.

DOI: 10.1103/physrevlett.91.155502

Google Scholar

[77] R.H. Mathiesen, L. Arnberg, F. Mo, T. Weitkamp, A. Snigirev. Time Resolved X-Ray Imaging of Dendritic Growth in Binary Alloys. Phys. Rev. Lett. 83 (1999) 5062–5065.

DOI: 10.1103/physrevlett.83.5062

Google Scholar

[78] T. Schenk, H.N. Thi, J. Gastaldi, G. Reinhart, V. Cristiglio, N. Mangelinck-Noël, H. Klein, J. Härtwig, B. Grushko, B. Billia. Application of synchrotron X-ray imaging to the study of directional solidification of aluminium-based alloys. J. Cryst. Growth 275 (2005).

DOI: 10.1016/j.jcrysgro.2004.10.081

Google Scholar

[79] B. Billia, N.T. Henri, M.N. Nathalie, N. Bergeon, H. Jung, G. Reinhart, A. Bogno, A. Buffet, J. Hartwig, J. Baruchel. In Situ Synchrotron X-ray Characterization of Microstructure Formation in Solidification Processing of Al-based Metallic Alloys. ISIJ International. 50 (2010).

DOI: 10.2355/isijinternational.50.1929

Google Scholar

[80] K. Nogita, H. Yasuda, A. Prasad, S.D. Mcdonald, T. Nagira, N. Nakatsuka, K. Uesugi, D.H. Stjohn. Real time synchrotron X-ray observations of solidification in hypoeutectic Al–Si alloys. Mater. Charact. 85 (2013) 134-140.

DOI: 10.1016/j.matchar.2013.08.015

Google Scholar

[81] E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al–15Cu alloy, Acta Mater. 70 (2014).

DOI: 10.1016/j.actamat.2014.02.024

Google Scholar

[82] B. Cai, J. Wang, A. Kao, K. Pericleous, A.B. Phillion, R.C. Atwood, P.D. Lee. 4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification. Acta Mater. 117 (2016) 160-169.

DOI: 10.1016/j.actamat.2016.07.002

Google Scholar

[83] C. Kenel, D. Grolimund, J.L. Fife, V.A. Samson, S.V. Petegem, H.V. Swygenhoven, C. Leinenbach. Combined in situ synchrotron micro X-ray diffraction and high-speed imaging on rapidly heated and solidified Ti–48Al under additive manufacturing conditions. Scri. Mater. 2016 (2016).

DOI: 10.1016/j.scriptamat.2015.12.009

Google Scholar

[84] K. Chen, X. Sha, X. Zhang, Y. Li. Rapid solidification of Cu25at.% Ni alloy: molecular dynamics simulations using embedded atom method. Mater. Sci. Engin. A 214 (1996) 139-145.

DOI: 10.1016/0921-5093(96)10207-0

Google Scholar

[85] H.J. Chang, L.F. Chen, X.F. Zhu. First principle molecular dynamic simulation of the rapid solidification process of Ca50Mg20Cu30 alloy. J. Appl. Phys. 112 (2012) 81-870.

Google Scholar

[86] G.S. Fishman, Monte Carlo, Springer, New York, (1996).

Google Scholar

[87] A. Das, S. Ji, Z. Fan. Morphological development of solidification structures under forced fluid flow: a Monte-Carlo simulation. Acta Mater. 50 (2002) 4571-4585.

DOI: 10.1016/s1359-6454(02)00305-1

Google Scholar

[88] Ch.-A. Gandin, M. Rappaz. Coupled finite element-cellular automation model for the prediction of dendritic grain structures in solidification processes. Acta Metall. 42 (1994) 2233-2246.

DOI: 10.1016/0956-7151(94)90302-6

Google Scholar

[89] A. Rai, M. Markl, C. Körner. A coupled Cellular Automaton–Lattice Boltzmann model for grain structure simulation during additive manufacturing. Comp. Mater. Sci. 127 (2016) 37-48.

DOI: 10.1016/j.commatsci.2016.07.005

Google Scholar

[90] X. Zhang, J. Zhao, H. Jiang, et al. A three-dimensional cellular automaton model for dendritic growth in multi-component alloy. Acta Mater. 60 (2012) 2249-2257.

DOI: 10.1016/j.actamat.2011.12.045

Google Scholar

[91] A.A. Wheeler, B.T. Murray, R.J. Schaefer. Computation of dendrites using a phase field model. Phys. D. 66 (1993) 243-262.

DOI: 10.1016/0167-2789(93)90242-s

Google Scholar

[92] I. Steinbach. Why Solidification? Why Phase-Field? JOM. 65 (2013) 1096-1102.

DOI: 10.1007/s11837-013-0681-5

Google Scholar

[93] L. Q. Chen. Phase-Field Models for Microstructure Evolution, Annu. Rev. Mater. Res. 2002, 32(32):113-140.

DOI: 10.1146/annurev.matsci.32.112001.132041

Google Scholar

[94] A. Karma, W.-J. Rappel. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53 (1996) R3017-R3020.

DOI: 10.1103/physreve.53.r3017

Google Scholar

[95] A. Karma, W.-J. Rappel. Numerical simulation of three-dimensional dendritic growth. Phys. Rev. Lett. 77 (1996) 4050.

DOI: 10.1103/physrevlett.77.4050

Google Scholar

[96] A. Karma, W.-J. Rappel. Phase-field simulation of three-dimensional dendrites: is microscopic solvability theory correct? J. Cryst. Growth 174 (1997) 54-64.

DOI: 10.1016/s0022-0248(96)01060-3

Google Scholar

[97] A. Karma, W.J. Rappel. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57(1998):4323-4349.

DOI: 10.1103/physreve.57.4323

Google Scholar

[99] A. Karma, W.-J. Rappel. Phase-field model of dendritic sidebranching with thermal noise. Physical Rev. E 60 (1999) 3614.

DOI: 10.1103/physreve.60.3614

Google Scholar

[100] A. Karma. Phase-Field Formulation for Quantitative Modeling of Alloy Solidification. Phys. Rev. Lett. 87 (2001) 115701-1-4.

DOI: 10.1103/physrevlett.87.115701

Google Scholar

[101] B. Echebarria, R. Folch, A. Karma, M. Plapp. Quantitative phase-field model of alloy solidification. Phys. Rev. E 70 (2004) 061604-1-22.

DOI: 10.1103/physreve.70.061604

Google Scholar

[102] H. Xing, X. Zhao, P. Duan, et al. Stability range of tilted dendritic arrays during directional solidification. Sci. China Tech. Sci. 57 (2014) 2530-2535.

DOI: 10.1007/s11431-014-5676-0

Google Scholar

[103] H. Xing, X.L. Dong, C.L. Chen, et al. Phase-field simulation of tilted growth of dendritic arrays during directional solidification. Int. J Heat and Mass Transfer 90 (2015) 911-921.

DOI: 10.1016/j.ijheatmasstransfer.2015.07.029

Google Scholar

[104] H. Xing, X. Dong, H. Wu, et al. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study. Sci. Rep. 6 (2016) 26625.

DOI: 10.1038/srep26625

Google Scholar

[105] H. Xing, L. M. Zhang, K. Song. Effect of interface anisotropy on growth direction of tilted dendritic arrays in directional solidification of alloys: insights from phase-field simulations. Int J Heat Mass Transfer. 104 (2017) 607-614.

DOI: 10.1016/j.ijheatmasstransfer.2016.08.096

Google Scholar

[106] H. Xing, K.Anikt, X.L. Dong, et al. Growth direction selection of tilted dendritic arrays in directional solidification over a wide range of pulling velocity: a phase-field study. Int J Heat Mass Transfer. 117 (2018) 1107-1114.

DOI: 10.1016/j.ijheatmasstransfer.2017.10.086

Google Scholar

[107] H. Xing, X.L. Dong, J.Y. Wang, K.X. Jin. Orientation dependence of columnar dendritic growth with sidebranching behaviors in directional solidification: insights from phase-field simulations. Unpublished.

DOI: 10.1007/s11663-018-1265-0

Google Scholar

[108] S.-C. Huang, M. Glicksman. Overview 12: Fundamentals of dendritic solidification—I. Steady-state tip growth. Acta Metall. 29 (1981) 701-715.

DOI: 10.1016/0001-6160(81)90115-2

Google Scholar

[109] M. Amoorezaei, S. Gurevich, N. Provatas. Spacing characterization in Al–Cu alloys directionally solidified under transient growth conditions. Acta Mater. 58 (2010) 6115-6124.

DOI: 10.1016/j.actamat.2010.07.029

Google Scholar

[110] S. Gurevich, M. Amoorezaei, N. Provatas. Phase-field study of spacing evolution during transient growth. Phys. Rev. E 82 (2010) 051606.

DOI: 10.1103/physreve.82.051606

Google Scholar

[111] J. Li, J. Zhang, W. Ge, et al. Multi-scale methodology for complex systems. Chem. Eng. Sci. 59 (2004) 1687−1700.

Google Scholar

[112] J. Li, W. Ge, W. Wang, N. Yang. Focusing on the meso-scales of multi-scale phenomena−In search for a new paradigm in chemical engineering. Particuology 8 (2010) 634−639.

DOI: 10.1016/j.partic.2010.09.007

Google Scholar

[113] T. Jiang, M. Georgelin, A. Pocheau. Wave dynamics on directional solidification interfaces swept by a flow in a thin sample. J Cryst. Growth 417 (2015) 37-43.

DOI: 10.1016/j.jcrysgro.2014.09.026

Google Scholar