Molecular Dynamics Simulations of Atoms Diffusion in Solid

Article Preview

Abstract:

Molecular dynamics (MD) simulations, which treat atoms as point particles and trace their individual trajectories, are always employed to investigate the transport properties of a many-body system. The diffusion coefficients of atoms in solid can be obtained by the Einstein relation and the Green-Kubo relation. An overview of the MD simulations of atoms diffusion in the bulk, surface and grain boundary is provided. We also give an example of the diffusion of helium in tungsten to illustrate the procedure, as well as the importance of the choice of interatomic potentials. MD simulations can provide intuitive insights into the atomic mechanisms of diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 15)

Pages:

51-64

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Ono, S. Furuno, K. Hojou, T. Kino, K. Izui, O. Takaoka, N. Kubo, K. Mizuno, K. Ito, In-situ observation of the migration and growth of helium bubbles in aluminum, J. Nucl. Mater. 191 (1992) 1269-1273.

DOI: 10.1016/0022-3115(92)90678-e

Google Scholar

[2] K. Ono, S. Furuno, S. Kanamitu, K. Hojou, In-situ observation of Brownian motion of helium bubbles along grain boundaries in aluminium, Philos. Mag. Lett. 75 (1997) 59-64.

DOI: 10.1080/095008397179750

Google Scholar

[3] J.A. Stroscio, D.T. Pierce, R.A. Dragoset, Homoepitaxial growth of iron and a real space view of reflection-high-energy-electron diffraction, Phys. Rev. Lett. 70 (1993) 3615-3618.

DOI: 10.1103/physrevlett.70.3615

Google Scholar

[4] T. Schuler, U. Hamlescher, P. Scharwaechter, W. Frank, Irradiation-Enhanced Self-Diffusion in Amorphous Metallic Alloys-Experiments, Molecular-Dynamics Simulations, Interpretation, Defect & Diffusion Forum. 143-147 (1997) 753-758.

DOI: 10.4028/www.scientific.net/ddf.143-147.753

Google Scholar

[5] F. Chamssedine, T. Sauvage, S. Peuget, T. Fares, G. Martin, Helium diffusion coefficient measurements in R7T7 nuclear glass by 3 He(d,α) 1 H nuclear reaction analysis, J. Nucl. Mater. 400 (2010) 175-181.

DOI: 10.1016/j.jnucmat.2010.02.023

Google Scholar

[6] Y. Pramono, K. Sasaki, T. Yano, Release and diffusion rate of helium in neutron-irradiated SiC, J. Nucl. Sci. Techol. 41 (2004) 751-755.

DOI: 10.1080/18811248.2004.9715542

Google Scholar

[7] A. Wagner, D.N. Seidman, Range Profiles of 300 and 475 eV 4He+ ions and the Diffusivity of 4He in Tungsten, Phys. Rev. Lett. 42 (1979) 515-518.

Google Scholar

[8] J. Amano, D.N. Seidman, Diffusivity of 3He atoms in perfect tungsten crystals, J. Appl. Phys. 56 (1984) 983-992.

DOI: 10.1063/1.334039

Google Scholar

[9] G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113 (2000) 9978-9985.

DOI: 10.1063/1.1323224

Google Scholar

[10] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901-9904.

DOI: 10.1063/1.1329672

Google Scholar

[11] K.D. Hammond, L. Hu, D. Maroudas, B.D. Wirth, Helium impurity transport on grain boundaries: Enhanced or inhibited?, Europhys. Lett. 110 (2015) 52002.

DOI: 10.1209/0295-5075/110/52002

Google Scholar

[12] X.L. Shu, X.C. Li, Y. Yu, Y.N. Liu, T.F. Wu, Y. Shuo, G.H. Lu, Fe self-diffusion and Cu and Ni diffusion in bulk and grain boundary of Fe: A molecular dynamics study, Nucl. Inst. & Meth B. 307 (2013) 37-39.

DOI: 10.1016/j.nimb.2012.11.073

Google Scholar

[13] H.B. Zhou, X. Ou, Y. Zhang, X. Shu, Y.L. Liu, G.H. Lu, Effect of carbon on helium trapping in tungsten: A first-principles investigation, J. Nucl. Mater. 440 (2013) 338-343.

DOI: 10.1016/j.jnucmat.2013.05.070

Google Scholar

[14] W.Y. Li, Y. Zhang, H.B. Zhou, S. Jin, G.H. Lu, Stress effects on stability and diffusion of H in W: A first-principles study, Nucl. Inst. & Meth B. 269 (2011) 1731-1734.

Google Scholar

[15] L. Zhang, C.C. Fu, G.H. Lu, Energetic landscape and diffusion of He in α-Fe grain boundaries from first principles, Phys. Rev. B. 87 (2013) 134107.

Google Scholar

[16] H.B. Zhou, Y.L. Liu, S. Jin, Y. Zhang, G.N. Luo, G.H. Lu, Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: from dissolution and diffusion to a trapping mechanism, Nucl. Fusion. 50 (2010) 025016.

DOI: 10.1088/0029-5515/50/2/025016

Google Scholar

[17] Y.L. Zhou, J. Wang, Q. Hou, A.H. Deng, Molecular dynamics simulations of the diffusion and coalescence of helium in tungsten, J. Nucl. Mater. 446 (2014) 49-55.

DOI: 10.1016/j.jnucmat.2013.11.034

Google Scholar

[18] J. Wang, Y.L. Zhou, M. Li, Q. Hou, Atomistic simulations of helium behavior in tungsten crystals, J. Nucl. Mater. 427 (2012) 290-296.

DOI: 10.1016/j.jnucmat.2012.05.020

Google Scholar

[19] D. Frenkel, B. Smit, Understanding Molecular Simulation: from algorithms to applications,second ed., Academic Press, Orlando, (2001).

Google Scholar

[20] Y. Zhang, M.I. Mendelev, C.Z. Wang, R. Ott, F. Zhang, M.F. Besser, K.M. Ho, M.J. Kramer, Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study, Phys. Rev. B. 90 (2014) 174101.

DOI: 10.1103/physrevb.90.174101

Google Scholar

[21] D.A. Young, A.K. Mcmahan, M. Ross, Equation of state and melting curve of helium to very high pressure, Phys. Rev. B. 24 (1981) 5119-5127.

DOI: 10.1103/physrevb.24.5119

Google Scholar

[22] G.J. Ackland, R. Thetford, An improved N-body semi-empirical model for body-centred cubic transition metals, Phil. Mag. A. 56 (1987) 15-30.

DOI: 10.1080/01418618708204464

Google Scholar

[23] X.C. Li, X. Shu, P. Tao, Y. Yu, G.J. Niu, Y. Xu, F. Gao, G.N. Luo, Molecular dynamics simulation of helium cluster diffusion and bubble formation in bulk tungsten, J. Nucl. Mater. 455 (2014) 544-548.

DOI: 10.1016/j.jnucmat.2014.08.028

Google Scholar

[24] Y.X. Feng, J.X. Shang, G.H. Lu, Migration and nucleation of helium atoms at (110) twist grain boundaries in tungsten, J. Nucl. Mater. 487 (2017) 200-209.

DOI: 10.1016/j.jnucmat.2017.01.045

Google Scholar

[25] D. Stewart, Y. Osetskiy, R. Stoller, Atomistic studies of formation and diffusion of helium clusters and bubbles in BCC iron, J. Nucl. Mater. 417 (2011) 1110-1114.

DOI: 10.1016/j.jnucmat.2010.12.217

Google Scholar

[26] C.S. Becquart, C. Domain, Migration energy of He in W revisited by Ab initio calculations, Phys. Rev. Lett. 97 (2006) 196402.

DOI: 10.1103/physrevlett.97.196402

Google Scholar

[27] G. Bonny, P. Grigorev, D. Terentyev, On the binding of nanometric hydrogen-helium clusters in tungsten, J. Phys.: Condens. Matter. 26 (2014) 485001.

DOI: 10.1088/0953-8984/26/48/485001

Google Scholar

[28] R. Frauenfelder, Solution and Diffusion of Hydrogen in Tungsten, J. Vac. Sci. Technol. 6 (1969) 388-397.

Google Scholar

[29] M.J. Tang, L. Colombo, J. Zhu, T. Diaz De La Rubia, Intrinsic point defects in crystalline silicon: Tight-binding molecular dynamics studiesof self-diffusion, interstitial-vacancy recombination, and formation volumes, Phys. Rev. B. 55 (1997).

DOI: 10.1103/physrevb.55.14279

Google Scholar

[30] D.A. Litton, S.H. Garofalini, Vitreous silica bulk and surface self-diffusion analysis by molecular dynamics, J. Non-Crystalline Solids. 217 (1997) 250-263.

DOI: 10.1016/s0022-3093(97)00107-5

Google Scholar

[31] E. Vincent-Aublant, J.M. Delaye, L.V. Brutzel, Self-diffusion near symmetrical tilt grain boundaries in UO2 matrix: A molecular dynamics simulation study, J. Nucl. Mater. 392 (2009) 114-120.

DOI: 10.1016/j.jnucmat.2009.03.059

Google Scholar

[32] G.J. Cheng, B.Q. Fu, Q. Hou, X.S. Zhou, J. Wang, Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation, Chin. Phys. B. 25 (2016) 076602.

DOI: 10.1088/1674-1056/25/7/076602

Google Scholar

[33] P. Keblinski, D. Wolf, S.R. Phillpot, H. Gleiter, Self-diffusion in high-angle fcc metal grain boundaries by molecular dynamics simulation, Philos. Mag. A. 79 (1999) 2735-2761.

DOI: 10.1080/01418619908212021

Google Scholar

[34] A.J. Haslam, V. Yamakov, D. Moldovan, D. Wolf, S.R. Phillpot, H. Gleiter, Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics simulation, Acta Mater. 52 (2004) 1971-(1987).

DOI: 10.1016/j.actamat.2003.12.048

Google Scholar

[35] Y. Yu, X.L. Shu, Y.N. Liu, G.H. Lu, Molecular dynamics simulation of hydrogen dissolution and diffusion in a tungsten grain boundary, J. Nucl. Mater. 455 (2014) 91-95.

DOI: 10.1016/j.jnucmat.2014.04.016

Google Scholar

[36] F. Gao, J.M. Qu, Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations, Mater. Lett. 73 (2012) 92-94.

DOI: 10.1016/j.matlet.2012.01.014

Google Scholar

[37] J.C. Tully, G.H. Gilmer, M. Shugard, Molecular dynamics of surface diffusion. I. The motion of adatoms and clusters, J. Chem. Phys. 71 (1979) 1630-1642.

DOI: 10.1063/1.438490

Google Scholar

[38] L.S. Darken, Diffusion of carbon in austenite with a discontinuity of com- position, Trans. AIME. 180 (1949) 430-438.

Google Scholar

[39] B. Wan, J. Hu, L. Zhong, B. Zhang, The self-diffusion and inter-diffusion in liquid Ce80Cu20, Sci. China-Phys. Mech. Astron. 45 (2015) 056101.

DOI: 10.1360/sspma2015-00001

Google Scholar

[40] B. Zhang, A. Griesche, A. Meyer, Diffusion in Al-Cu melts studied by time-resolved X-ray radiography, Phys. Rev. Lett. 104 (2010) 035902.

DOI: 10.1103/physrevlett.104.035902

Google Scholar

[41] J. Horbach, S.K. Das, A. Griesche, M.P. Macht, G. Frohberg, A. Meyer, Self-diffusion and Interdiffusion in Al80Ni20 Melts: Simulation and Experiment, Phys. Rev. B. 75 (2007) 174304.

DOI: 10.1103/physrevb.75.174304

Google Scholar

[42] C.Q. Wang, Z. Qin, Y.S. Zhang, Q. Sun, Y. Jia, A molecular dynamics simulation of self-diffusion on Fe surfaces, Appl. Surf. Sci. 258 (2012) 4294-4300.

DOI: 10.1016/j.apsusc.2011.12.084

Google Scholar

[43] G.A. Evangelakis, N.I. Papanicolaou, Adatom self-diffusion processes on (001) copper surface by molecular dynamics, Surf. Sci. 347 (1996) 376-386.

DOI: 10.1016/0039-6028(95)00991-4

Google Scholar

[44] G. Boisvert, L.J. Lewis, Self-diffusion on low-index metallic surfaces: Ag and Au (100) and (111), Phys. Rev. B. 54 (1996) 2880.

DOI: 10.1103/physrevb.54.2880

Google Scholar

[45] H.L. Yang, Q. Sun, Z.Y. Zhang, Y. Jia, Upward self-diffusion of adatoms and small clusters on facets of fcc metal (110) surfaces, Phys. Rev. B. 76 (2007) 115417.

DOI: 10.1103/physrevb.76.115417

Google Scholar