[1]
K. Ono, S. Furuno, K. Hojou, T. Kino, K. Izui, O. Takaoka, N. Kubo, K. Mizuno, K. Ito, In-situ observation of the migration and growth of helium bubbles in aluminum, J. Nucl. Mater. 191 (1992) 1269-1273.
DOI: 10.1016/0022-3115(92)90678-e
Google Scholar
[2]
K. Ono, S. Furuno, S. Kanamitu, K. Hojou, In-situ observation of Brownian motion of helium bubbles along grain boundaries in aluminium, Philos. Mag. Lett. 75 (1997) 59-64.
DOI: 10.1080/095008397179750
Google Scholar
[3]
J.A. Stroscio, D.T. Pierce, R.A. Dragoset, Homoepitaxial growth of iron and a real space view of reflection-high-energy-electron diffraction, Phys. Rev. Lett. 70 (1993) 3615-3618.
DOI: 10.1103/physrevlett.70.3615
Google Scholar
[4]
T. Schuler, U. Hamlescher, P. Scharwaechter, W. Frank, Irradiation-Enhanced Self-Diffusion in Amorphous Metallic Alloys-Experiments, Molecular-Dynamics Simulations, Interpretation, Defect & Diffusion Forum. 143-147 (1997) 753-758.
DOI: 10.4028/www.scientific.net/ddf.143-147.753
Google Scholar
[5]
F. Chamssedine, T. Sauvage, S. Peuget, T. Fares, G. Martin, Helium diffusion coefficient measurements in R7T7 nuclear glass by 3 He(d,α) 1 H nuclear reaction analysis, J. Nucl. Mater. 400 (2010) 175-181.
DOI: 10.1016/j.jnucmat.2010.02.023
Google Scholar
[6]
Y. Pramono, K. Sasaki, T. Yano, Release and diffusion rate of helium in neutron-irradiated SiC, J. Nucl. Sci. Techol. 41 (2004) 751-755.
DOI: 10.1080/18811248.2004.9715542
Google Scholar
[7]
A. Wagner, D.N. Seidman, Range Profiles of 300 and 475 eV 4He+ ions and the Diffusivity of 4He in Tungsten, Phys. Rev. Lett. 42 (1979) 515-518.
Google Scholar
[8]
J. Amano, D.N. Seidman, Diffusivity of 3He atoms in perfect tungsten crystals, J. Appl. Phys. 56 (1984) 983-992.
DOI: 10.1063/1.334039
Google Scholar
[9]
G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113 (2000) 9978-9985.
DOI: 10.1063/1.1323224
Google Scholar
[10]
G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901-9904.
DOI: 10.1063/1.1329672
Google Scholar
[11]
K.D. Hammond, L. Hu, D. Maroudas, B.D. Wirth, Helium impurity transport on grain boundaries: Enhanced or inhibited?, Europhys. Lett. 110 (2015) 52002.
DOI: 10.1209/0295-5075/110/52002
Google Scholar
[12]
X.L. Shu, X.C. Li, Y. Yu, Y.N. Liu, T.F. Wu, Y. Shuo, G.H. Lu, Fe self-diffusion and Cu and Ni diffusion in bulk and grain boundary of Fe: A molecular dynamics study, Nucl. Inst. & Meth B. 307 (2013) 37-39.
DOI: 10.1016/j.nimb.2012.11.073
Google Scholar
[13]
H.B. Zhou, X. Ou, Y. Zhang, X. Shu, Y.L. Liu, G.H. Lu, Effect of carbon on helium trapping in tungsten: A first-principles investigation, J. Nucl. Mater. 440 (2013) 338-343.
DOI: 10.1016/j.jnucmat.2013.05.070
Google Scholar
[14]
W.Y. Li, Y. Zhang, H.B. Zhou, S. Jin, G.H. Lu, Stress effects on stability and diffusion of H in W: A first-principles study, Nucl. Inst. & Meth B. 269 (2011) 1731-1734.
Google Scholar
[15]
L. Zhang, C.C. Fu, G.H. Lu, Energetic landscape and diffusion of He in α-Fe grain boundaries from first principles, Phys. Rev. B. 87 (2013) 134107.
Google Scholar
[16]
H.B. Zhou, Y.L. Liu, S. Jin, Y. Zhang, G.N. Luo, G.H. Lu, Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: from dissolution and diffusion to a trapping mechanism, Nucl. Fusion. 50 (2010) 025016.
DOI: 10.1088/0029-5515/50/2/025016
Google Scholar
[17]
Y.L. Zhou, J. Wang, Q. Hou, A.H. Deng, Molecular dynamics simulations of the diffusion and coalescence of helium in tungsten, J. Nucl. Mater. 446 (2014) 49-55.
DOI: 10.1016/j.jnucmat.2013.11.034
Google Scholar
[18]
J. Wang, Y.L. Zhou, M. Li, Q. Hou, Atomistic simulations of helium behavior in tungsten crystals, J. Nucl. Mater. 427 (2012) 290-296.
DOI: 10.1016/j.jnucmat.2012.05.020
Google Scholar
[19]
D. Frenkel, B. Smit, Understanding Molecular Simulation: from algorithms to applications,second ed., Academic Press, Orlando, (2001).
Google Scholar
[20]
Y. Zhang, M.I. Mendelev, C.Z. Wang, R. Ott, F. Zhang, M.F. Besser, K.M. Ho, M.J. Kramer, Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study, Phys. Rev. B. 90 (2014) 174101.
DOI: 10.1103/physrevb.90.174101
Google Scholar
[21]
D.A. Young, A.K. Mcmahan, M. Ross, Equation of state and melting curve of helium to very high pressure, Phys. Rev. B. 24 (1981) 5119-5127.
DOI: 10.1103/physrevb.24.5119
Google Scholar
[22]
G.J. Ackland, R. Thetford, An improved N-body semi-empirical model for body-centred cubic transition metals, Phil. Mag. A. 56 (1987) 15-30.
DOI: 10.1080/01418618708204464
Google Scholar
[23]
X.C. Li, X. Shu, P. Tao, Y. Yu, G.J. Niu, Y. Xu, F. Gao, G.N. Luo, Molecular dynamics simulation of helium cluster diffusion and bubble formation in bulk tungsten, J. Nucl. Mater. 455 (2014) 544-548.
DOI: 10.1016/j.jnucmat.2014.08.028
Google Scholar
[24]
Y.X. Feng, J.X. Shang, G.H. Lu, Migration and nucleation of helium atoms at (110) twist grain boundaries in tungsten, J. Nucl. Mater. 487 (2017) 200-209.
DOI: 10.1016/j.jnucmat.2017.01.045
Google Scholar
[25]
D. Stewart, Y. Osetskiy, R. Stoller, Atomistic studies of formation and diffusion of helium clusters and bubbles in BCC iron, J. Nucl. Mater. 417 (2011) 1110-1114.
DOI: 10.1016/j.jnucmat.2010.12.217
Google Scholar
[26]
C.S. Becquart, C. Domain, Migration energy of He in W revisited by Ab initio calculations, Phys. Rev. Lett. 97 (2006) 196402.
DOI: 10.1103/physrevlett.97.196402
Google Scholar
[27]
G. Bonny, P. Grigorev, D. Terentyev, On the binding of nanometric hydrogen-helium clusters in tungsten, J. Phys.: Condens. Matter. 26 (2014) 485001.
DOI: 10.1088/0953-8984/26/48/485001
Google Scholar
[28]
R. Frauenfelder, Solution and Diffusion of Hydrogen in Tungsten, J. Vac. Sci. Technol. 6 (1969) 388-397.
Google Scholar
[29]
M.J. Tang, L. Colombo, J. Zhu, T. Diaz De La Rubia, Intrinsic point defects in crystalline silicon: Tight-binding molecular dynamics studiesof self-diffusion, interstitial-vacancy recombination, and formation volumes, Phys. Rev. B. 55 (1997).
DOI: 10.1103/physrevb.55.14279
Google Scholar
[30]
D.A. Litton, S.H. Garofalini, Vitreous silica bulk and surface self-diffusion analysis by molecular dynamics, J. Non-Crystalline Solids. 217 (1997) 250-263.
DOI: 10.1016/s0022-3093(97)00107-5
Google Scholar
[31]
E. Vincent-Aublant, J.M. Delaye, L.V. Brutzel, Self-diffusion near symmetrical tilt grain boundaries in UO2 matrix: A molecular dynamics simulation study, J. Nucl. Mater. 392 (2009) 114-120.
DOI: 10.1016/j.jnucmat.2009.03.059
Google Scholar
[32]
G.J. Cheng, B.Q. Fu, Q. Hou, X.S. Zhou, J. Wang, Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation, Chin. Phys. B. 25 (2016) 076602.
DOI: 10.1088/1674-1056/25/7/076602
Google Scholar
[33]
P. Keblinski, D. Wolf, S.R. Phillpot, H. Gleiter, Self-diffusion in high-angle fcc metal grain boundaries by molecular dynamics simulation, Philos. Mag. A. 79 (1999) 2735-2761.
DOI: 10.1080/01418619908212021
Google Scholar
[34]
A.J. Haslam, V. Yamakov, D. Moldovan, D. Wolf, S.R. Phillpot, H. Gleiter, Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics simulation, Acta Mater. 52 (2004) 1971-(1987).
DOI: 10.1016/j.actamat.2003.12.048
Google Scholar
[35]
Y. Yu, X.L. Shu, Y.N. Liu, G.H. Lu, Molecular dynamics simulation of hydrogen dissolution and diffusion in a tungsten grain boundary, J. Nucl. Mater. 455 (2014) 91-95.
DOI: 10.1016/j.jnucmat.2014.04.016
Google Scholar
[36]
F. Gao, J.M. Qu, Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations, Mater. Lett. 73 (2012) 92-94.
DOI: 10.1016/j.matlet.2012.01.014
Google Scholar
[37]
J.C. Tully, G.H. Gilmer, M. Shugard, Molecular dynamics of surface diffusion. I. The motion of adatoms and clusters, J. Chem. Phys. 71 (1979) 1630-1642.
DOI: 10.1063/1.438490
Google Scholar
[38]
L.S. Darken, Diffusion of carbon in austenite with a discontinuity of com- position, Trans. AIME. 180 (1949) 430-438.
Google Scholar
[39]
B. Wan, J. Hu, L. Zhong, B. Zhang, The self-diffusion and inter-diffusion in liquid Ce80Cu20, Sci. China-Phys. Mech. Astron. 45 (2015) 056101.
DOI: 10.1360/sspma2015-00001
Google Scholar
[40]
B. Zhang, A. Griesche, A. Meyer, Diffusion in Al-Cu melts studied by time-resolved X-ray radiography, Phys. Rev. Lett. 104 (2010) 035902.
DOI: 10.1103/physrevlett.104.035902
Google Scholar
[41]
J. Horbach, S.K. Das, A. Griesche, M.P. Macht, G. Frohberg, A. Meyer, Self-diffusion and Interdiffusion in Al80Ni20 Melts: Simulation and Experiment, Phys. Rev. B. 75 (2007) 174304.
DOI: 10.1103/physrevb.75.174304
Google Scholar
[42]
C.Q. Wang, Z. Qin, Y.S. Zhang, Q. Sun, Y. Jia, A molecular dynamics simulation of self-diffusion on Fe surfaces, Appl. Surf. Sci. 258 (2012) 4294-4300.
DOI: 10.1016/j.apsusc.2011.12.084
Google Scholar
[43]
G.A. Evangelakis, N.I. Papanicolaou, Adatom self-diffusion processes on (001) copper surface by molecular dynamics, Surf. Sci. 347 (1996) 376-386.
DOI: 10.1016/0039-6028(95)00991-4
Google Scholar
[44]
G. Boisvert, L.J. Lewis, Self-diffusion on low-index metallic surfaces: Ag and Au (100) and (111), Phys. Rev. B. 54 (1996) 2880.
DOI: 10.1103/physrevb.54.2880
Google Scholar
[45]
H.L. Yang, Q. Sun, Z.Y. Zhang, Y. Jia, Upward self-diffusion of adatoms and small clusters on facets of fcc metal (110) surfaces, Phys. Rev. B. 76 (2007) 115417.
DOI: 10.1103/physrevb.76.115417
Google Scholar