The Study of Magnetic Properties of Fe/Ag/Cr Thin Films

Article Preview

Abstract:

(300Å)Fe films were deposited, on MgO (001) single crystalline substrate with various buffer layer thickness tAg (Å) / (75Å) Cr. The magnetic properties of the Fe films were measured by magneto-optic Kerr effect (MOKE) technique. The MOKE measurements provided the tAg buffer layer thickness dependence of the hysteresis loops and the change of loop shapes with the surface roughness. It was found that the magnetization reversal process changed with the surface roughness. Magnetization rotation dominated the magnetization reversal for the smoothest films. As the films roughened, the domain-wall pinning set in, eventually dominating the magnetization reversal for the roughest films. Additionally, the magnetic uniaxial anisotropy in the Fe films disappeared as the roughness parameters increased. It was also found from MOKE that the surface roughness strongly affected the coercivity.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 18)

Pages:

1-6

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M‏. N‏. A‏. Shafi, M. A‏. Rahim, M. N. A. Siddiquy, M. K. Hasan, M. J. Islam, Comparative Study of Magnetization of Co Thin Films Deposited on Glass, GaAs (001) and Si (001) Substrates, Int. J. Thin. Fil. Sci. Tec. 4 (2015) 193-197.

DOI: 10.18576/ijtfst/060306

Google Scholar

[2] I. Bensehil ,A. Kharmouche ,A. Bourzami, Synthesis, Structural, and Magnetic Properties of Fe Thin Films, J. Sup. Nov. Magn. 30 (2017) 795–799.

DOI: 10.1007/s10948-016-3669-x

Google Scholar

[3] Y. Cao, K. Xu, W. Jiang, T. Droubay, P. Ramuhalli, D. Edwards, B.R. Johnson, J. McCloy, Hysteresis in single and polycrystalline iron thin films: major and minor loops, first order reversal curves, and Preisach modeling, J. Magn. Magn. Mater. 395 (2015).

DOI: 10.1016/j.jmmm.2015.06.072

Google Scholar

[4] P. Jing, M. Liu, Y. Pu, Y. Cui, Z. Wang, J. Wang, Q. Liu, Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen, Sci. Rep. 6 (2016) 1-9.

DOI: 10.1038/srep37701

Google Scholar

[5] R.K. Nutor, X.Xu, X. Fan, H. Xingwei, Y. Fang, Transverse anisotropy field and lattice plane anisotropy of stress annealed Fe–Cu–Nb–Si–B ribbons, Chi. J. Phys.56 (2018) 180-184.

DOI: 10.1016/j.cjph.2017.12.015

Google Scholar

[6] D.Iaia, A.Kubetzka, K.Bergmann, R.Wiesendanger, Structural and magnetic properties of Ni/Fe nanostructures on Ir(111), Phys. Rev B. 93 (2016) 134409.

DOI: 10.1103/physrevb.93.134409

Google Scholar

[7] J. Zhou, T. Jiao, W. Guo, B.Wang, H. Guo, L. Cui, Q. Zhang, Y. Chen, Q. Peng, Preparation of Iron-nickel Alloy Nanostructures via Two Cationic Pyridinium Derivatives as Soft Templates, Nano.Mat.Nano.tech. 5 (2015) 1-7.

DOI: 10.5772/61296

Google Scholar

[8] R. Brajpuriya, Thickness and Interface-Dependent Structural, Magnetic, and Transport Properties of Cu/Co Thin Film and Multilayer Structures , J. Exp. Phy. 569691 (2014) 1-5.

DOI: 10.1155/2014/569691

Google Scholar

[9] Q. Zhang,P. Li, Y. Wen, C. Zhao, J. W. Zhang, A. Manchon, W. B. Mi, Y. Peng, X. X. Zhang, Anomalous Hall effect in Fe/Au multilayers, Phys. Rev. B. 94 (2016) 024428.

DOI: 10.1103/physrevb.94.024428

Google Scholar

[10] J. Gao, G.Zhang, Y.W. Zhang, Exploring Ag(111) Substrate for Epitaxially Growing Monolayer Stanene: A First-Principles Study, Sci. Rep. 6 (2016) 29107.

DOI: 10.1038/srep29107

Google Scholar

[11] M. Goyal, B.R.K. Gupta, Shape and size dependent thermophysical properties of nanocrystals, Chin. J. Phys. 56 (2018) 282–291.

DOI: 10.1016/j.cjph.2017.12.014

Google Scholar

[12] R.K. Nutor, X. Xu, X. Fan, X. He, Y. Fang, Transverse anisotropy field and lattice plane anisotropy of stress annealed Fe–Cu–Nb–Si–B ribbons, Chin. J. Phys. 56 (2018) 180–184.

DOI: 10.1016/j.cjph.2017.12.015

Google Scholar

[13] L. B. Romano, J. Rubίn, C. Magѐn, D. E. Bürgler, J. Bartolomé, Iron silicide formation at different layers of (Fe/Si)3multilayered structures determined by conversion electron Mössbauer spectroscopy, J. Appl. Phys.116 (2014) 023907.

DOI: 10.1063/1.4887522

Google Scholar

[14] M. Afshari, M. E. Ghazi, M. Izadifard, Structural and Magnetic Properties of Fe/Cu/Fe Trilayers, Afr. Rev. Phys. 10 (2015) 27-37.

Google Scholar

[15] S. Yamamoto, I.Matsuda, Measurement of the Resonant Magneto-Optical Kerr Effect Using a Free Electron Laser, Appl. Sci. 7 (2017) 662.

DOI: 10.3390/app7070662

Google Scholar

[16] L. Baldrati, A. J. Tan, M. Mann, R. Bertacco, G. S. D. Beach, Magneto-ionic effect in CoFeB thin films with in-plane and perpendicular-to-plane magnetic anisotropy, Appl. Phys. Lett.110 (2017) 012404.

DOI: 10.1063/1.4973475

Google Scholar

[17] S. Ma, A. Tan, J. X. Deng, J. Li, Z. D. Zhang, C. Hwang, Z. Q. Qiu, Tailoring the magnetic anisotropy of Py/Ni bilayer films using well aligned atomic steps on Cu(001), Sci. Rep. 5 (2015) 11055.

DOI: 10.1038/srep11055

Google Scholar

[18] S. Mallik, Stefan Mattauch, M.K. Dalai, T. Brückel, S. Bedanta, Efect of magnetic fullerene on magnetization reversal created at the Fe/C60 interface, Sci. Rep. 8 (2018) 5515.

DOI: 10.1038/s41598-018-23864-8

Google Scholar

[19] J.R. Fermin, Surface Magneto-Optical Kerr Effect Study of Magnetization Reversal in Epitaxial Fe(100) Thin Films, Res. Rev. J. Mat. Sci.4(2016) 7-11.

DOI: 10.4172/2321-6212.1000134

Google Scholar

[20] R. Otero, A.L. Vázquez de Parga, J.M. Gallego, Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces, Surf. Sci. Rep. 72 (2017) 105–145.

DOI: 10.1016/j.surfrep.2017.03.001

Google Scholar

[21] G. Ortiz, A. G.Garcίa, N. Biziere, F. Boust, J. F. Bobo, E. Snoeck ,Growth, Structural, and magnetic characterization of epitaxial Co2MnSi films deposited on MgO and Cr seed layers, J. Appl. Phys.113 (2013) 043921.

DOI: 10.1063/1.4789801

Google Scholar

[22] R. Boukhalfa, A. Djabri, F. Chemam, Substrate dependence of HC coercive field in Fe/Ag thin films, Amer. J. Nano. Res. Appl. 2(2014) 1-4.

Google Scholar

[23] J. Pal,M. Smerieri, E. Celasco, L. Savio,L. Vattuone, M. Rocca, Morphology of Monolayer MgO Films on Ag(100): Switching from Corrugated Islands to Extended Flat Terraces, Phys. Rev. Lett. 112 (2014) 126102.

DOI: 10.1103/physrevlett.112.126102

Google Scholar

[24] S. Schönecker, X. Li, B. Johansson, S.K. Kwon, L.Vitos, Thermal surface free energy and stress of iron, Sci. Rep. 5 (2015) 14860.

DOI: 10.1038/srep14860

Google Scholar

[25] C.C. Hsu1, P.C. Chang, Y.H. Chen, C. M. Liu, C.T. Wu, H.W. Yen, W.C. Lin, Reversible 90-Degree Rotation of Fe Magnetic Moment Using Hydrogen, Sci. Rep.8 (2018) 3251.

DOI: 10.1038/s41598-018-21712-3

Google Scholar

[26] S.K.Bac, H. Lee, S. Lee, S. Choi, T. Yoo, S. Lee, X. Liu, J. K. Furdyna, Observation of uniaxial anisotropy along the [100] direction in crystalline Fe film, Sci. Rep. 5(2015)17761.

DOI: 10.1038/srep17761

Google Scholar

[27] I. Kanada,A Cruce, T.Mewes, S. Wu,C. Mewes, G. Mankey, T.Suzuki, Soft magnetic properties and damping parameter of (FeCo)-Al alloy thin films, AIP. Adv. 7 (2017) 056105.

DOI: 10.1063/1.4975995

Google Scholar